Embryological Origins (embryological + origins)

Distribution by Scientific Domains


Selected Abstracts


A case of an accessory brachialis muscle

CLINICAL ANATOMY, Issue 6 2006
Marios Loukas
Abstract Functionally, the brachialis muscle serves a critical role as the primary flexor of the arm at the elbow. However, few reports exist in the literature, which describe variations of this muscle. We present a case of an accessory brachialis muscle (AcBr), found during routine dissection at Harvard Medical School during 2003. The AcBr originated medially from the mid-shaft of the humerus and the medial intermuscular septum. During its course medially, toward the elbow, the AcBr crossed both the brachial artery and the median nerve. The distal tendon split to surround the median nerve before inserting into the common tendon of the antebrachial flexor compartment muscles. Embryological origins and clinical considerations including median nerve entrapment are considered. Clin. Anat. 19:550,553, 2006. 2005 Wiley-Liss, Inc. [source]


Development of the cypriniform protrusible jaw complex in Danio rerio: Constructional insights for evolution

JOURNAL OF MORPHOLOGY, Issue 7 2010
Katie Lynn Staab
Abstract Studies on the evolution of complex biological systems are difficult because the construction of these traits cannot be observed during the course of evolution. Complex traits are defined as consisting of multiple elements, often of differing embryological origins, with multiple linkages integrated to form a single functional unit. An example of a complex system is the cypriniform oral jaw apparatus. Cypriniform fishes possess an upper jaw characterized by premaxillary protrusion during feeding. Cypriniforms effect protrusion via the kinethmoid, a synapomorphy for the order. The kinethmoid is a sesamoid ossification suspended by ligaments attaching to the premaxillae, maxillae, palatines, and neurocranium. Upon mouth opening, the kinethmoid rotates as the premaxillae move anteriorly. Along with bony and ligamentous elements, there are three divisions of the adductor mandibulae that render this system functional. It is unclear how cypriniform jaws evolved because although the evolution of sesamoid elements is common, the incorporation of the kinethmoid into the protrusible jaw results in a function that is atypical for sesamoids. Developmental studies can show how biological systems are assembled within individuals and offer clues about how traits might have been constructed during evolution. We investigated the development of the protrusible upper jaw in zebrafish to generate hypotheses regarding the evolution of this character. Early in development, the adductor mandibulae arises as a single unit. The muscle divides after ossification of the maxillae, on which the A1 division will ultimately insert. A cartilaginous kinethmoid first develops within the intermaxillary ligament; it later ossifies at points of ligamentous attachment. We combine our structural developmental data with published kinematic data at key developmental stages and discuss potential functional advantages in possessing even the earliest stages of a system for protrusion. J. Morphol. 2010. 2010 Wiley-Liss, Inc. [source]


Myogenic precursor cells in craniofacial muscles

ORAL DISEASES, Issue 2 2007
LK McLoon
Craniofacial skeletal muscles (CskM), including the masticatory (MM), extraocular (EOM) and laryngeal muscles (LM), have a number of properties that set them apart from the majority of skeletal muscles (SkM). They have embryological origins that are distinct from musculature elsewhere in the body, they express a number of immature myosin heavy chain isoforms and maintain increased and distinct expression of a number of myogenic growth factors and their receptors from other adult SkMs. Furthermore, it has recently been demonstrated that unlike limb SkM, normal adult EOM and LM retain a population of activated satellite cells, the regenerative cell in adult SkM. In order to maintain this proliferative pool throughout life, CSkM may contain more satellite cells and/or more multipotent precursor cells that may be more resistant to apoptosis than those found in limb muscle. A further exciting question is whether this potentially more active muscle precursor cell population could be utilized not only for SkM repair, but be harnessed for repair or reconstruction of other tissues, such as nervous tissue or bone. This is a highly attractive speculation as the innate regenerative capacity of craniofacial muscles would ensure the donor tissue would not have compromised future function. [source]


Clinical and molecular aspects of aniridia

CLINICAL GENETICS, Issue 5 2010
H Kokotas
Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Aniridia is a severe, congenital ocular malformation inherited in an autosomal-dominant fashion with high penetrance and variable expression. Eye morphogenesis in humans involves a molecular genetic cascade in which a number of developmental genes interact in a highly organized process during the embryonic period to produce functional ocular structures. Among these genes, paired box gene 6 (PAX6) has an essential role as it encodes a phylogenetically conserved transcription factor almost universally employed for eye formation in animals with bilateral symmetry, despite widely different embryological origins. To direct eye development, PAX6 regulates the tissue-specific expression of diverse molecules, hormones, and structural proteins. In humans, PAX6 is located in chromosome 11p13, and its mutations lead to a variety of hereditary ocular malformations of the anterior and posterior segment, among which aniridia and most probably foveal hypoplasia are the major signs. Aniridia occurs due to decreased dosage of the PAX6 gene and exists in both sporadic and familial forms. The mutations are scattered throughout the gene and the vast majority of those reported so far are nonsense mutations, frameshift mutations, or splicing errors that are predicted to cause pre-mature truncation of the PAX6 protein, causing haploinsufficiency. Here we review the data regarding the mechanisms and the mutations that relate to aniridia. [source]