Electrotonic Coupling (electrotonic + coupling)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Glutamatergic input governs periodicity and synchronization of bursting activity in oxytocin neurons in hypothalamic organotypic cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
Jean-Marc Israel
Abstract During suckling, oxytocin (OT) neurons display a bursting electrical activity, consisting of a brief burst of action potentials which is synchronized throughout the OT neuron population and which periodically occurs just before each milk ejection in the lactating rat. To investigate the basis of such synchronization, we performed simultaneous intracellular recordings from pairs of OT neurons identified retrospectively by intracellular fluorescent labelling and immunocytochemistry in organotypic slice cultures derived from postnatal rat hypothalamus. A spontaneous bursting activity was recorded in 65% of OT neurons; the remaining showed only a slow, irregular activity. Application of OT triggered bursts in nonbursting neurons and accelerated bursting activity in spontaneously bursting cells. These cultures included rare vasopressinergic neurons showing no bursting activity and no reaction to OT. Bursts occurred simultaneously in all pairs of bursting OT neurons but, as in vivo, there were differences in burst onset, amplitude and duration. Coordination of firing was not due to electrotonic coupling because depolarizing one neuron in a pair had no effect on the membrane potential of its partner and halothane and proprionate did not desynchronize activity. On the other hand, bursting activity was superimposed on volleys of excitatory postsynaptic potentials (EPSPs) which occurred simultaneously in pairs of neurons. EPSPs, and consequently action potentials, were reversibly blocked by the non-NMDA glutamatergic receptor antagonist CNQX. Taken together, these data, obtained from organotypic cultures, strongly suggest that a local hypothalamic network governs synchronization of bursting firing in OT neurons through synchronous afferent volleys of EPSPs originating from intrahypothalamic glutamatergic inputs. [source]


Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: heart rate-mediated attenuation

EXPERIMENTAL PHYSIOLOGY, Issue 8 2008
Carlos L. Del Rio
Parasympathetic activity during acute coronary artery occlusion (CAO) can protect against ischaemia-induced malignant arrhythmias; nonetheless, the mechanism mediating this protection remains unclear. During CAO, myocardial electrotonic uncoupling is associated with autonomically mediated immediate (i.e. type 1A) arrhythmias and can modulate pro-arrhythmic dispersion of repolarization. Therefore, the effects of acutely enhanced or decreased cardiac parasympathetic activity on early electrotonic coupling during CAO, as measured by myocardial electrical impedance (MEI), were investigated. Anaesthetized dogs were instrumented for MEI measurements, and left circumflex coronary arterial occlusions were performed in intact (CTRL) and vagotomized (VAG) animals. The CAO was followed by either vagotomy (CTRL) or vagal nerve stimulation (VNS, 10 Hz, 10 V) in the VAG dogs. Vagal nerve stimulation was studied in two additional sets of animals. In one set heart rate (HR) was maintained by pacing (220 beats min,1), while in the other set bilateral stellectomy preceded CAO. The MEI increased after CAO in all animals. A larger MEI increase was observed in vagotomized animals (+85 ± 9 ,, from 611 ± 24 ,, n= 16) when compared with intact control dogs (+43 ± 5 ,, from 620 ± 20 ,, n= 7). Acute vagotomy during ischaemia abruptly increased HR (from 155 ± 11 to 193 ± 15 beats min,1) and MEI (+12 ± 1.1 ,, from 663 ± 18 ,). In contrast, VNS during ischaemia (n= 11) abruptly reduced HR (from 206 ± 6 to 73 ± 9 beats min,1) and MEI (,16 ± 2 ,, from 700 ± 44 ,). These effects of VNS were eliminated by pacing but not by bilateral stellectomy. Vagal nerve stimulation during CAO also attenuated ECG-derived indices of ischaemia (e.g. ST segment, 0.22 ± 0.03 versus 0.15 ± 0.03 mV) and of rate-corrected repolarization dispersion [terminal portion of T wave (TPEc), 84.5 ± 4.2 versus 65.8 ± 5.9 ms; QTc, 340 ± 8 versus 254 ± 16 ms]. Vagal nerve stimulation during myocardial ischaemia exerts negative chronotropic effects, limiting early ischaemic electrotonic uncoupling and dispersion of repolarization, possibly via a decreased myocardial metabolic demand. [source]


Mechanisms for Discordant Alternans

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2 2001
MARI A. WATANABE M.D., Ph.D.
Discordant Alternans Mechanism.Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one- and two-dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans. [source]


Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
Damian M. Cummings
Abstract Gap junctions provide a means for electrotonic coupling between neurons, allowing for the generation of synchronous activity, an important contributor to learning and memory. Connexin36 (Cx36) is largely neuron specific and provides a target for genetic manipulation to determine the physiological relevance of neuronal coupling. Within the striatum, Cx36 is more specifically localized to the interneuronal population, which provides the main inhibitory input to the principal projection medium-sized spiny neurons. In the present study, we examined the impact of genetic ablation of Cx36 on striatal spontaneous synaptic activity. Patch-clamp recordings were performed from medium-sized spiny neurons, the primary target of interneurons. In Cx36 knockout mice, the frequencies of both excitatory and inhibitory spontaneous postsynaptic currents were reduced. We also showed that activation of dopamine receptors differentially modulated the frequency of GABAergic currents in Cx36 knockout mice compared with their wild-type littermates, suggesting that dopamine plays a role in altering the coupling of interneurons. Taken together, the present findings demonstrate that electrical coupling of neuronal populations is important for the maintenance of normal chemical synaptic interactions within the striatum. © 2008 Wiley-Liss, Inc. [source]


Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery

THE JOURNAL OF PHYSIOLOGY, Issue 3 2004
Shaun L. Sandow
A role for myoendothelial gap junctions (MEGJs) has been proposed in the action of the vasodilator endothelium-derived hyperpolarizing factor (EDHF). EDHF activity varies in disease and during ageing, but little is known of the role of EDHF during development when, in many organ systems, gap junctions are up-regulated. The aims of the present study were therefore to determine whether an up-regulation of heterocellular gap junctional coupling occurs during arterial development and whether this change is reflected functionally through an increased action of EDHF. Results demonstrated that in the saphenous artery of juvenile WKY rats, MEGJs were abundant and application of acetylcholine (ACh) evoked EDHF-mediated hyperpolarization and relaxation in the presence of N, -nitro- l -arginine methyl ester (L-NAME) and indomethacin to inhibit nitric oxide and prostaglandins, respectively. Responses were blocked by a combination of charybdotoxin plus apamin, or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) plus apamin, or by blockade of gap junctions with the connexin (Cx)-mimetic peptides, 43Gap26, 40Gap27 and 37,43Gap27. On the other hand, we found no evidence for the involvement of the putative chemical mediators of EDHF, eicosanoids, L-NAME-insensitive nitric oxide, hydrogen peroxide or potassium ions, since 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), hydroxocobalamin, catalase or barium and ouabain were without effect. In contrast, in the adult saphenous artery, MEGJs were rare, EDHF-mediated relaxation was absent and hyperpolarizations were small and unstable. The present study demonstrates that MEGJs and EDHF are up-regulated during arterial development. Furthermore, the data show for the first time that this developmentally regulated EDHF is dependent on direct electrotonic coupling via MEGJs. [source]


Glutamate receptor stimulation induces a persistent rhythmicity of the GABAergic inputs to rat midbrain dopaminergic neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2001
Nicola Berretta
Abstract The substantia nigra pars compacta and the ventral tegmental area are part of a complex network in the basal ganglia involved in behaviours as diverse as motor planning, generation of pleasure and drug addiction. Here we report that in the dopaminergic neurons of the rat ventral midbrain a brief coactivation of group I metabotropic and NMDA glutamate receptors may transform a temporally dispersed synaptic GABAergic input into a rhythmic pattern (range 4.5,22.5 Hz), probably through a mechanism involving electrotonic couplings. The plastic and long-lasting modification in the temporal code of the inhibitory synaptic activity induced by glutamate may be a key element in determining the function of midbrain dopaminergic neurons in both normal and pathological behaviour. [source]