Home About us Contact | |||
Electrophysiological Techniques (electrophysiological + techniques)
Selected AbstractsIon current activity and molecules modulating maturation and growth stages of ascidian (Ciona intestinalis) oocytesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2009Francesco Silvestre Electrophysiological techniques were used to study ion currents in the ascidian Ciona intestinalis oocyte plasma membranes during different stages of growth and meiosis. Three stages (A, B, C) of immature oocytes were discriminated in the ovary, with the germinal vesicle (GV) showing specific different features of growth and maturation. Stage A (pre-vitellogenic) oocytes exhibited the highest L-type Ca2+current activity, and were incompetent for meiosis resumption. Stage B (vitellogenic) oocytes showed Na+ currents that remained high during the maturation, up to the post-vitellogenic stage C oocytes. The latter had acquired meiotic competence, undergoing spontaneous maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation plays a specific role in embryo development. Spontaneous maturation was inhibited at low pH whereas trypsin was able to trigger germinal vesicle breakdown (GVBD) regardless of pH; in addition spontaneous maturation was not affected by removal of follicle cells or by inhibiting junctional communication between oocyte and follicle cells. Taken together these results imply: (i) Ca2+ and Na+ currents are involved in meiotic progression, growth, and acquisition of meiotic competence; (ii) trypsin-like molecules may have a role as candidates for providing the physiological stimulus to resume meiosis. Finally, we provide evidence that follicle cells in Ciona are not involved in triggering GVBD as it occurs in other ascidians. Mol. Reprod. Dev. 76: 1084,1093, 2009. © 2009 Wiley-Liss, Inc. [source] Mental rotation of body parts and sensory temporal discrimination in fixed dystonia,MOVEMENT DISORDERS, Issue 8 2010Petra Katschnig MD Abstract Fixed dystonia is an uncommon but severely disabling condition typically affecting young women following a minor peripheral injury. There is no evidence of any structural lesions of the central nervous system nor any clear peripheral nerve or root damage. Electrophysiological techniques such as short intracortical inhibition, cortical silent period and a plasticity inducing protocol have revealed similarities but also differences compared to classical mobile dystonia. To further explore the pathophysiology of fixed dystonia we compared mental rotation of body parts and sensory temporal discrimination in 11 patients with fixed dystonia, 11 patients with classical mobile dystonia and 10 healthy controls. In the mental rotation task subjects were presented with realistic photos of left or right hands, feet and the head of a young women with a black patch covering the left or the right eye in six different orientations. Subjects had to verbally report the laterality of the presented stimuli. To assess sensory temporal discrimination subjects were asked to discriminate whether pairs of visual, tactile (electrical), or visuo-tactile stimuli were simultaneous or sequential (temporal discrimination threshold) and in the latter case which stimulus preceded the other (temporal order judgement). In accordance with previous studies patients with mobile dystonia were abnormal in mental rotation and temporal discrimination, whereas patients with fixed dystonia were only impaired in mental rotation. Possible explanations for this deficit may include the influence of the abnormal body posture itself, a shared predisposing pathophysiology for mobile and fixed dystonia, or a body image disturbance. These findings add information to the developing pathophysiological picture of fixed dystonia. © 2010 Movement Disorder Society [source] Effects of urethane anaesthesia on sensory processing in the rat barrel cortex revealed by combined optical imaging and electrophysiologyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2010Ian M. Devonshire Abstract The spatiotemporal dynamics of neuronal assemblies evoked by sensory stimuli have not yet been fully characterised, especially the extent to which they are modulated by prevailing brain states. In order to examine this issue, we induced different levels of anaesthesia, distinguished by specific electroencephalographic indices, and compared somatosensory-evoked potentials (SEPs) with voltage-sensitive dye imaging (VSDI) responses in the rat barrel cortex evoked by whisker deflection. At deeper levels of anaesthesia, all responses were reduced in amplitude but, surprisingly, only VSDI responses exhibited prolonged activation resulting in a delayed return to baseline. Further analysis of the optical signal demonstrated that the reduction in response amplitude was constant across the area of activation, resulting in a global down-scaling of the population response. The manner in which the optical signal relates to the various neuronal generators that produce the SEP signal is also discussed. These data provide information regarding the impact of anaesthetic agents on the brain, and show the value of combining spatial analyses from neuroimaging approaches with more traditional electrophysiological techniques. [source] Veni, vidi, vici: the neurohypophysis in the twentieth centuryEXPERIMENTAL PHYSIOLOGY, Issue 2000John A. Russell We outline the key discoveries in the first 70 years of research on the neurohypophysis that provided the foundations for more recent studies in the last 30 years. We consider the extent to which these recent studies, which have exploited molecular technologies, cellular electrophysiological techniques and mechanistic behavioural investigations, have advanced or changed our understanding of the functions of oxytocin and vasopressin. The different evolutionary pressures on the oxytocin and vasopressin systems are discussed. Lastly, we focus on the mechanisms underlying the burst-firing activity of oxytocin neurones in lactation as a problem not yet solved, and probably requiring a presently improbable conceptual leap to understand. [source] Endocannabinoids, a novel target in pain treatmentJOURNAL OF NEUROCHEMISTRY, Issue 2003S. C. Azad Cannabinoids display a variety of central effects including analgesia, control of spasticity and influence of emotional states. Activation of the brain-type cannabinoid receptor CB1 inhibits the adenylyl cyclase-protein kinase A-pathway and modulates calcium and potassium conductances. CB1 is widely distributed throughout the central nervous system. Among other brain regions, CB1 is highly expressed in the amygdala, which is important for the control of emotional behavior including anxiety and pain perception. In a recent investigation using auditory fear-conditioning tests, we showed that the endogenous cannabinoid system in the amygdala is crucially involved in the extinction of aversive memories. Using electrophysiological techniques, we also found that endogenous and exogenously applied cannabinoids play a major role in the modulation of both, synaptic transmission and plasticity in this brain region. Our behavioral and electrophysiological results indicate that the endogenous cannabinoid system may represent a novel target in the treatment of chronic pain. [source] Distinct properties of murine ,5 ,-aminobutyric acid type a receptors revealed by biochemical fractionation and mass spectroscopyJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2009Young H. Ju Abstract ,-Aminobutyric acid type A receptors (GABAARs) that contain the ,5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABAARs containing the ,5 subunit (,5 GABAARs) are localized primarily to extrasynaptic regions of neurons, where they generate a tonic inhibitory conductance. The unique characteristics of ,5 GABAARs have been examined with pharmacological, immunostaining, and electrophysiological techniques; however, little is known about their biochemical properties. The aim of this study was to modify existing purification and enrichment techniques to isolate ,5 GABAARs preferentially from the mouse hippocampus and to identify the ,5 subunit by using tandem mass spectroscopy (MS/MS). The results showed that the detergent solubility of the ,5 subunits was distinct from that of ,1 and ,2 subunits, and the relative distribution of the ,5 subunits in Triton X-100-soluble fractions was correlated with that of the extracellular protein radixin but not with that of the postsynaptic protein gephyrin. Mass spectrometry identified the ,5 subunit and showed that this subunit associates with multiple ,, ,, and , subunits, but most frequently the ,3 subunit. Thus, the ,5 subunits coassemble with similar subunits as their synaptic counterparts yet have a distinct detergent solubility profile. Mass spectroscopy now offers a method for detecting and characterizing factors that confer the unique detergent solubility and possibly cellular location of ,5 GABAARs in hippocampal neurons. © 2009 Wiley-Liss, Inc. [source] Acute Effects of Ethanol on Kainate Receptors in Cultured Hippocampal NeuronsALCOHOLISM, Issue 2 2000Edmar T. Costa Background: Kainate receptors are a subclass of ionotropic glutamate receptors that regulate excitability and mediate synaptic transmission and plasticity in the hippocampus. The acute effects of ethanol on these receptors are not completely understood. Methods: The acute effects of ethanol on pharmacologically isolated kainate receptor-mediated currents were studied in cultured hippocampal neurons obtained from neonatal rats. Whole-cell patch-clamp electrophysiological techniques were used for these studies. LY303070 (GYKI-53784), a potent AMPA (,-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor-selective noncompetitive antagonist, was used to isolate kainate currents. Results: Kainate receptor-mediated currents corresponded to 7% of the total non- N -methyl- d -aspartate (non-NMDA) currents in these neurons and were reduced to 24% of control values in the presence of 15 ,M lanthanum. These kainate receptor-mediated currents were significantly inhibited by ethanol concentrations of 50 mM or more. Under our recording conditions, ethanol inhibited non-NMDA receptor- and NMDA receptor-mediated currents to a similar extent as kainate receptor-mediated currents. Western blot analysis indicated that glutamate receptor-5 and -6/7 subunits, and kainic acid-2 subunits are expressed in these cultured hippocampal neurons. Conclusions: The present results suggest that kainate receptors are important targets for the actions of ethanol in the central nervous system. [source] Synchronization of enteric neuronal firing during the murine colonic MMCTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Nick J. Spencer DiI (1,1,didodecyl-3,3,3,,3,-tetramethylindocarbecyanine perchlorate) retrograde labelling and intracellular electrophysiological techniques were used to investigate the mechanisms underlying the generation of spontaneously occurring colonic migrating myoelectric complexes (colonic MMCs) in mice. In isolated, intact, whole colonic preparations, simultaneous intracellular electrical recordings were made from pairs of circular muscle (CM) cells during colonic MMC activity in the presence of nifedipine (1,2 ,m). During the intervals between colonic MMCs, spontaneous inhibitory junction potentials (IJPs) were always present. The amplitudes of spontaneous IJPs were highly variable (range 1,20 mV) and occurred asynchronously in the two CM cells, when separated by 1 mm in the longitudinal axis. Colonic MMCs occurred every 151 ± 7 s in the CM and consisted of a repetitive discharge of cholinergic rapid oscillations in membrane potential (range: 1,20 mV) that were superimposed on a slow membrane depolarization (mean amplitude: 9.6 ± 0.5 mV; half-duration: 25.9 ± 0.7 s). During the rising (depolarizing) phase of each colonic MMC, cholinergic rapid oscillations occurred simultaneously in both CM cells, even when the two electrodes were separated by up to 15 mm along the longitudinal axis of the colon. Smaller amplitude oscillations (< 5 mV) showed poor temporal correlation between two CM cells, even at short electrode separation distances (i.e. < 1 mm in the longitudinal axis). When the two electrodes were separated by 20 mm, all cholinergic rapid oscillations and IJPs in the CM (regardless of amplitude) were rarely, if ever, coordinated in time during the colonic MMC. Cholinergic rapid oscillations were blocked by atropine (1 ,m) or tetrodotoxin (1 ,m). Slow waves were never recorded from any CM cells. DiI labelling showed that the maximum projection length of CM motor neurones and interneurones along the bowel was 2.8 mm and 13 mm, respectively. When recordings were made adjacent to either oral or anal cut ends of the colon, the inhibitory or excitatory phases of the colonic MMC were absent, respectively. In summary, during the colonic MMC, cholinergic rapid oscillations of similar amplitudes occur simultaneously in two CM cells separated by large distances (up to 15 mm). As this distance was found to be far greater than the projection length of any single CM motor neurone, we suggest that the generation of each discrete cholinergic rapid oscillation represents a discreet cholinergic excitatory junction potential (EJP) that involves the synaptic activation of many cholinergic motor neurones simultaneously, by synchronous firing in many myenteric interneurones. Our data also suggest that ascending excitatory and descending inhibitory nerve pathways interact and reinforce each other. [source] Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae,THE LARYNGOSCOPE, Issue 8 2008Mahalakshmi Sivasankar PhD Abstract Objectives/Hypothesis: Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-, (TNF,) were investigated. Study Design: In vitro experimental design with matched treatment and control groups. Methods: Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNF,, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results: Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNF, did not significantly alter cAMP concentration. Conclusions: We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. [source] Spider sex pheromones: emission, reception, structures, and functionsBIOLOGICAL REVIEWS, Issue 1 2007A. C. Gaskett Abstract Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid soluble, may be closely related to primary metabolites, and are not necessarily species specific, although they can still assist with species recognition. Newer electrophysiological techniques coupled with chemical analyses assist with the identification of sex pheromone compounds. This provides opportunities for more targeted behavioural experimentation, perhaps with synthetic pheromones, and for theorising about the biosynthesis and evolution of chemical signals generally. Given the intriguing biology of spiders, and the critical role of chemical signals for spiders and many other animal taxa, a deeper understanding of spider sex pheromones should prove productive. [source] Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinasesBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2010Ching-On Wong Background and purpose:, TRPC5 is a Ca2+ -permeable channel with multiple modes of activation. We have explored the effects of genistein, a plant-derived isoflavone, on TRPC5 activity, and the mechanism(s) involved. Experimental approach:, Effects of genistein on TRPC5 channels were investigated in TRPC5-over-expressing human embryonic kidney 293 (HEK) cells and bovine aortic endothelial cells (BAECs) using fluorescent Ca2+ imaging and electrophysiological techniques. Key results:, In TRPC5-over-expressing HEK cells, genistein stimulated TRPC5-mediated Ca2+ influx, concentration dependently (EC50= 93 µM). Genistein and lanthanum activated TRPC5 channels synergistically. Effects of genistein on TRPC5 channels were mimicked by daidzein (100 µM), a genistein analogue inactive as a tyrosine kinase inhibitor, but not by known tyrosine kinase inhibitors herbimycin (2 µM), PP2 (20 µM) and lavendustin A (10 µM). Action of genistein on TRPC5 channels was not affected by an oestrogen receptor inhibitor ICI-182780 (50 µM) or a phospholipase C inhibitor U73122 (10 µM), suggesting genistein did not act through oestrogen receptors or phospholipase C. In BAECs, genistein (100 µM) stimulated TRPC5-mediated Ca2+ influx. In patch clamp studies, both genistein (50 µM) and daidzein (50 µM) augmented TRPC5-mediated whole-cell cation current in TRPC5 over-expressing HEK cells. Genistein stimulated TRPC5 channel activity in excised inside-out membrane patch, suggesting that its action was relatively direct and did not require cytosolic factors. Conclusions and implications:, The present study is the first to demonstrate stimulation of a TRP channel by isoflavones. Genistein is a lipophilic compound able to stimulate TRPC5 activity in TRPC5-over-expressing HEK cells and in native vascular endothelial cells. [source] Effects of the antiepileptic drugs on peripheral nerve functionACTA NEUROLOGICA SCANDINAVICA, Issue 1 2010E. Boylu Objective,,, We aimed to compare the effects of antiepileptic drugs and provide findings of peripheral nerve impairment using standard electrophysiological techniques. Materials and methods,,, Young adult outpatients with epilepsy on monotherapy for no less than 6 months with carbamazepine (CBZ), valproic acid (VPA), oxcarbazepine (OXC) and topiramate (TPM) were examined. Patients who had any other disease that could effect nerve conduction studies and who had neuropathic symptoms were excluded. Results,,, Each group contained 15 patients and 20 healthy subjects were examined as the control group. Prolonged latency of median sensory nerve (P = 0.004), ulnar sensory nerve (P = 0.01) and sural nerve (P = 0.003) with a diminished nerve conduction velocity was observed in the CBZ group (P = 0.014, P = 0.002, P = 0.025, respectively). No correlation was found between VPA, OXC and TPM and the nerve conduction studies (P > 0.05). Conclusions,,, Valproic acid, oxcarbazepine and topiramate don't have effects on nerve conduction studies. Mild electrophysiological changes contribute to carbamazepine therapy. [source] |