Electrophysiological Experiments (electrophysiological + experiment)

Distribution by Scientific Domains


Selected Abstracts


Flavonoids from Chinese Viscum coloratum: antiarrhythmic efficacy and ionic mechanisms

PHYTOTHERAPY RESEARCH, Issue 12 2006
Chu Wen-Feng
Abstract Viscum coloratum flavonoids (VCF) have been demonstrated to produce a variety of biological actions. An accumulating line of evidence supported the view that VCF may exert protective effects on the cardiovascular system. The aim of the study was to assess the antiarrhythmic activity as well as the electrophysiological properties of VCF. The antiarrhythmic effects of VCF were observed in a rat model of arrhythmia induced by aconitine. VCF significantly and dose-dependently increased the dosage of aconitine required to induce the arrhythmia indexes. Electrophysiological experiment revealed that VCF shortened APD through inhibition of ICa-L. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium

PLANT CELL & ENVIRONMENT, Issue 1 2004
V. VOLKOV
ABSTRACT Thellungiella halophila is a salt-tolerant close relative of Arabidopsis thaliana. Significant mRNA similarity was confirmed by hybridization of T. halophila mRNA with the A. thaliana GeneChip ATH1. To establish a platform for future molecular comparison of the two species several physiological mechanisms, which may confer high salt tolerance to T. halophila, were investigated. Determination of ion content in shoots and roots of A. thaliana and T. halophila indicated different strategies of ion uptake and translocation from root to shoot in the two species. During salt stress T. halophila accumulated less sodium than A. thaliana. Tissue concentrations of sodium and potassium showed negative correlation in A. thaliana but not in T. halophila. Electrophysiological experiments proved high potassium/sodium selectivity of root plasma membrane channels in T. halophila. In particular, voltage-independent currents were more selective for potassium in T. halophila than in A. thaliana. Single cell sampling of T. halophila leaves during salt exposure revealed increased concentrations of sodium and decreased concentrations of potassium in epidermal cells suggesting that this cell type could function to ensure storage of sodium and exchange of potassium with the rest of leaf. Application of salt resulted in a sharp drop of transpiration in A. thaliana. By contrast, transpiration in T. halophila responded more slowly and was only slightly inhibited by salt treatment, thus maintaining high water uptake and ion transport. [source]


Ion channel activity of transmembrane segment 6 of Escherichia coli proton-dependent manganese transporter

BIOPOLYMERS, Issue 8 2010
uková
Abstract Synthetic peptides corresponding to the sixth transmembrane segment (TMS6) of secondary-active transporter MntH (Proton-dependent Manganese Transporter) from Escherichia coli and its two mutations in the functionally important conserved histidine residue were used as a model for structure,function study of MntH. The secondary structure of the peptides was estimated in different environments using circular dichroism spectroscopy. These peptides interacted with and adopted helical conformations in lipid membranes. Electrophysiological experiments demonstrated that TMS6 was able to form multi-state ion channels in model biological membranes. Electrophysiological properties of these weakly cation-selective ion channels were strongly dependent on the surrounding pH. Manganese ion, as a physiological substrate of MntH, enhanced the conductivity of TMS6 channels, influenced the transition between closed and open states, and affected the peptide conformations. Moreover, functional properties of peptides carrying two different mutations of His211 were analogous to in vivo functional characteristics of Nramp/MntH proteins mutated at homologous residues. Hence, a single functionally important TMS can retain some of the functional properties of the full-length protein. These findings could contribute to understanding the structure,function relationship at the molecular level. However it remains unclear to what extent the peptide-specific channel activity represents a functional aspect of the full-length membrane carrier protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 718,726, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Functions of glutamate transporters in cerebellar Purkinje cell synapses

ACTA PHYSIOLOGICA, Issue 1 2009
Y. Takayasu
Abstract Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post-synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one-to-one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT-1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT-1 affects cerebellar morphology, the deletion of both GLAST and GLT-1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1-mediated events including slow EPSCs and long-term depression. No change in synaptic function is detected in mice that are deficient in EAAC1. [source]


Corticothalamic Modulation during Absence Seizures in Rats: A Functional MRI Assessment

EPILEPSIA, Issue 9 2003
Jeffrey R. Tenney
Summary:,Purpose: Functional magnetic resonance imaging (fMRI) was used to identify areas of brain activation during absence seizures in an awake animal model. Methods: Blood-oxygenation-level,dependent (BOLD) fMRI in the brain was measured by using T2*-weighted echo planar imaging at 4.7 Tesla. BOLD imaging was performed before, during, and after absence seizure induction by using ,-butyrolactone (GBL; 200 mg/kg, intraperitoneal). Results: The corticothalamic circuitry, critical for spike,wave discharge (SWD) formation in absence seizure, showed robust BOLD signal changes after GBL administration, consistent with EEG recordings in the same animals. Predominantly positive BOLD changes occurred in the thalamus. Sensory and parietal cortices showed mixed positive and negative BOLD changes, whereas temporal and motor cortices showed only negative BOLD changes. Conclusions: With the BOLD fMRI technique, we demonstrated signal changes in brain areas that have been shown, with electrophysiology experiments, to be important for generating and maintaining the SWDs that characterize absence seizures. These results corroborate previous findings from lesion and electrophysiological experiments and show the technical feasibility of noninvasively imaging absence seizures in fully conscious rodents. [source]


Severely impaired neuromuscular synaptic transmission causes muscle weakness in the Cacna1a -mutant mouse rolling Nagoya

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
Simon Kaja
Abstract The ataxic mouse rolling Nagoya (RN) carries a missense mutation in the Cacna1a gene, encoding the pore-forming subunit of neuronal Cav2.1 (P/Q-type) Ca2+ channels. Besides being the predominant type of Cav channel in the cerebellum, Cav2.1 channels mediate acetylcholine (ACh) release at the peripheral neuromuscular junction (NMJ). Therefore, Cav2.1 dysfunction induced by the RN mutation may disturb ACh release at the NMJ. The dysfunction may resemble the situation in Lambert,Eaton myasthenic syndrome (LEMS), in which autoantibodies target Cav2.1 channels at NMJs, inducing severely reduced ACh release and resulting in muscle weakness. We tested neuromuscular function of RN mice and characterized transmitter release properties at their NMJs in diaphragm, soleus and flexor digitorum brevis muscles. Clinical muscle weakness and fatigue were demonstrated using repetitive nerve-stimulation electromyography, grip strength testing and an inverted grid hanging test. Muscle contraction experiments showed a compromised safety factor of neuromuscular transmission. In ex vivo electrophysiological experiments we found severely impaired ACh release. Compared to wild-type, RN NMJs had 50,75% lower nerve stimulation-evoked transmitter release, explaining the observed muscle weakness. Surprisingly, the reduction in evoked release was accompanied by an ,,3-fold increase in spontaneous ACh release. This synaptic phenotype suggests a complex effect of the RN mutation on different functional Cav2.1 channel parameters, presumably with a positive shift in activation potential as a prevailing feature. Taken together, our studies indicate that the gait abnormality of RN mice is due to a combination of ataxia and muscle weakness and that RN models aspects of the NMJ dysfunction in LEMS. [source]


Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001
Mario Engelmann
Abstract Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic,neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 °C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABAA receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states. [source]


Competitive Hebbian learning and the hippocampal place cell system: Modeling the interaction of visual and path integration cues

HIPPOCAMPUS, Issue 3 2001
Alex Guazzelli
Abstract The hippocampus has long been thought essential for implementing a cognitive map of the environment. However, almost 30 years since place cells were found in rodent hippocampal field CA1, it is still unclear how such an allocentric representation arises from an egocentrically perceived world. By means of a competitive Hebbian learning rule responsible for coding visual and path integration cues, our model is able to explain the diversity of place cell responses observed in a large set of electrophysiological experiments with a single fixed set of parameters. Experiments included changes observed in place fields due to exploration of a new environment, darkness, retrosplenial cortex inactivation, and removal, rotation, and permutation of landmarks. To code for visual cues for each landmark, we defined two perceptual schemas representing landmark bearing and distance information over a linear array of cells. The information conveyed by the perceptual schemas is further processed through a network of adaptive layers which ultimately modulate the resulting activity of our simulated place cells. In path integration terms, our system is able to dynamically remap a bump of activity coding for the displacement of the animal in relation to an environmental anchor. We hypothesize that path integration information is computed in the rodent posterior parietal cortex and conveyed to the hippocampus where, together with visual information, it modulates place cell activity. The resulting network yields a more direct treatment of partial remapping of place fields than other models. In so doing, it makes new predictions regarding the nature of the interaction between visual and path integration cues during new learning and when the system is challenged with environmental changes. Hippocampus 2001;11:216,239. © 2001 Wiley-Liss, Inc. [source]


Oviposition by Lobesia botrana is stimulated by sugars detected by contact chemoreceptors

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2006
Nevile Maher
Abstract., The influence of glucose, fructose and sucrose on oviposition site selection by Lobesia botrana is studied by combining behavioural and electrophysiological experiments. Oviposition choice assays, using surrogate grapes treated with grape berry surface extracts of Vitis vinifera cv. Merlot at different development stages, show that L. botrana females are most stimulated by extracts of mature berries containing the highest concentrations of glucose and fructose. Choice assays reveal that the oviposition response to these sugars is dose-dependant (with a threshold of the applied solution = 10 mm and a maximum stimulation at 1 m) and that females are more sensitive to fructose than to glucose. Tarsal contact-chemoreceptor sensilla are unresponsive to stimulation with sugars but the ovipositor sensilla contain at least one neurone most sensitive to fructose and sucrose with a threshold of approximately 0.5 mm. Corresponding to the behavioural data, glucose is significantly less stimulatory to sensilla than fructose or sucrose. It is argued that fructose may be of special importance for herbivorous insects exploiting fruit as an oviposition site. [source]


Application of Penalized Splines in Analyzing Neuronal Data

BIOMETRICAL JOURNAL, Issue 1 2009
John T. Maringwa
Abstract Neuron experiments produce high-dimensional data structures. Therefore, application of smoothing techniques in the analysis of neuronal data from electrophysiological experiments has received considerable attention of late. We investigate the use of penalized splines in the analysis of neuronal data. This is first illustrated when interested in the temporal trend of a single neuron. An approach to investigate the maximal firing rate, based on the penalizedspline model is proposed. Determination of the time of maximal firing rate is based on non-linear optimization of the objective function with the corresponding confidence intervals constructed based on the first-order derivative function. To distinguish between the curves from different experimental conditions in a moment-by-moment sense, bias adjusted simulation-based simultaneous confidence bands leading to global inference in the time domain are constructed. The bands are an extension of the approach proposed by Ruppert et al. (2003). These methods are in a second step extended towards the analysis of a population of neurons via a marginal or population-averaged model (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]