Electrophoretic Separation (electrophoretic + separation)

Distribution by Scientific Domains

Kinds of Electrophoretic Separation

  • capillary electrophoretic separation


  • Selected Abstracts


    In-situ Bulk Electrophoretic Separation of Single-Walled Carbon Nanotubes Grown by Gas-Phase Catalytic Hydrocarbon Decomposition,

    CHEMICAL VAPOR DEPOSITION, Issue 7-9 2010
    Dmitriy V. Smovzh
    Abstract Electrophoresis is used to separate carbon nanotubes from other by-products during CVD growth from iron catalyst particles, using C2H2 as the carbon feedstock. Carbon nanotubes are trapped by electric fields with higher efficiency than other carbon-containing products. The structure and yield of the carbon nanotubes depends critically on the gas parameters and applied electric field used in the novel reaction chamber. A higher yield of single-walled carbon nanotubes (SWNTs) can be obtained on electrodes in comparison to exhaust filters. The results indicate that the NTs produced by thermal CVD in the gas phase are negatively charged. [source]


    Dry film microchips for miniaturised separations

    ELECTROPHORESIS, Issue 24 2009
    Rosanne M. Guijt
    Abstract In this work microfluidic devices were made from the dry film photoresist Ordyl SY330, characterised by optical and electron microscopy and used for electrophoretic separations. A simple and fast microfabrication process was developed for the fabrication of channels that are 50,,m wide and 30,,m in height, requiring only the use of an office laminator, a hot plate, an exposure source and mask and an electric drill to make four microdevices in less than 1,h. The optical properties of the photoresist were studied and the resist showed significant absorbance below 370,nm and 570,630,nm, and had an optical transmission of 80% between 400 and 550,nm. Fluorescence emission over the region of maximum transmission was low allowing these devices to be used for fluorescence detection at 488/512,nm. Electrophoretic separation of APTS and three derivatised sugars was performed in 20,mM phosphate buffer, pH 2.5 with efficiencies of the three sugars of 40,000 plates (2,100,000,plates/m) within 30,s at a field strength of 500,V/cm. The simple fabrication process also allowed microchannels to be easily filled with chromatography particles before sealing, avoiding the challenging task of slurry packing, and the potential of these devices for liquid chromatography was demonstrated by the extraction of fluorescein onto anion exchange particles. [source]


    Characterisation of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins

    PLANT BIOLOGY, Issue 5 2010
    A. Campos
    Abstract Chloroplast transglutaminase (chlTGase) activity is considered to play a significant role in response to a light stimulus and photo-adaptation of plants, but its precise function in the chloroplast is unclear. The characterisation, at the proteomic level, of the chlTGase interaction with thylakoid proteins and demonstration of its association with photosystem II (PSII) protein complexes was accomplished with experiments using maize thylakoid protein extracts. By means of a specific antibody designed against the C-terminal sequence of the maize TGase gene product, different chlTGase forms were immunodetected in thylakoid membrane extracts from three different stages of maize chloroplast differentiation. These bands co-localised with those of lhcb 1, 2 and 3 antenna proteins. The most significant, a 58 kDa form present in mature chloroplasts, was characterised using biochemical and proteomic approaches. Sequential fractionation of thylakoid proteins from light-induced mature chloroplasts showed that the 58 kDa form was associated with the thylakoid membrane, behaving as a soluble or peripheral membrane protein. Two-dimensional gel electrophoresis discriminated, for the first time, the 58-kDa band in two different forms, probably corresponding to the two different TGase cDNAs previously cloned. Electrophoretic separation of thylakoid proteins in native gels, followed by LC-MS mass spectrometry identification of protein complexes indicated that maize chlTGase forms part of a specific PSII protein complex, which includes LHCII, ATPase and pSbS proteins. The results are discussed in relation to the interaction between these proteins and the suggested role of the enzyme in thylakoid membrane organisation and photoprotection. [source]


    The Dependence of the Sensitivity and Reliability of Contactless Conductivity Detection on the Wall Thickness of Electrophoretic Fused-Silica Capillaries

    ELECTROANALYSIS, Issue 3-5 2009
    Petr T
    Abstract A contactless conductivity detector (C4D) performance has been tested on a simple capillary electrophoretic separation in a standard fused-silica capillary with an external diameter of 360,,m and in a thin-walled capillary (an external diameter of 150,,m); the internal diameters of the two capillaries were identical, equal to 75,,m. Potassium and sodium ions have been separated in a morpholinoethanesulfonic acid/histidine background electrolyte (MES/His), over a wide range of its concentrations (0,100,mM). At low MES/His concentrations, the C4D response, obtained from the height of the potassium peak, is by 100 to 200 per cent higher for the thin-walled capillary and the calibration dependences are linear, in contrast to the thick-walled capillary. These differences between the two capillaries decrease with increasing MES/His concentration, the C4D response in the thin-walled capillary is then higher by mere 20 per cent and the calibration dependences are linear in both the capillaries. The highest sensitivities have been obtained at a MES/His concentration of 50,mM, with LOD values for potassium ion of 2.0 and 2.6,,M, in the thin- and thick-walled capillaries, respectively. The signal-to-noise ratios and the plate counts are generally similar for the two capillaries. It follows from the results that special thin-walled capillaries can be advantageous when background electrolytes with very low conductivities must be employed. [source]


    Comparison of the Electrochemical Behavior of the High Molecular Mass Cadmium Proteins in Arabidopsis thaliana and in Vegetable Plants on Using Preparative Native Continuous Polyacrylamide Gel Electrophoresis (PNC-PAGE)

    ELECTROANALYSIS, Issue 1 2006
    Bernd Kastenholz
    Abstract In Arabidopsis cytosol (supernatant) and in supernatants of vegetable plants high molecular mass cadmium proteins with molecular mass 200,kDa were isolated by using preparative native continuous polyacrylamide gel electrophoresis (PNC-PAGE). Because of a different electrochemical behavior of the Cd proteins in Arabidopsis and endive supernatants on using the same PAGE method, it is concluded that the high molecular mass cadmium proteins of Arabidopsis and endive possess different isoelectric points. Consequently, different chemical structures of the Cd proteins with molecular mass 200,kDa are present in Arabidopsis thaliana and in endive. During the electrophoretic separation of vegetable metalloproteins by using the Model 491 Prep Cell from BioRad, electroanalytical processes like electrode reactions may play an important role. [source]


    A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips

    ELECTROPHORESIS, Issue 15 2010
    Zhi Chen
    Abstract A novel spring-driven press device was designed and manufactured for hot embossing and thermal bonding of PMMA microfluidic chips in this work. This simple device consisted of two semi-cylinder silicone rubber press heads, three steel clamping plates, and three compression springs that were assembled together using two screw bolts and two butterfly nuts. The three springs were clamped between the upper and the middle clamping plates, whereas the two press heads were assembled between the middle and the lower clamping plates. After an epoxy template covered by a PMMA plate or a PMMA channel plate together with a cover were sandwiched between two microscopic glass slides for embossing or bonding, respectively, they were clamped between the two elastic press heads of the press device by fastening the screw nuts on the upper clamping plate. Because the convex press heads applied pressure along the middle line of the glass slides, they would deform resulting in a negative pressure gradient from the middle to the sides so that air bubbles between the sandwiched parts could be squeezed out during embossing and bonding processes. High-quality PMMA microfluidic chips were prepared by using this unique device and were successfully applied in the electrophoretic separation of several cations. [source]


    Simultaneous determination of six non-polar heterocyclic amines in meat samples by supercritical fluid extraction,capillary electrophoresis under fluorimetric detection

    ELECTROPHORESIS, Issue 13 2010
    Fernando De Andrés
    Abstract A novel, sensitive and selective method for the separation and quantification of a group of non-polar heterocyclic amines (9H-pyrido-[3,4-b] indole, norharmane; 1-methyl-9H-pyrido-[3,4-b] indole, harmane; 2-amino-9H-pyrido-[2,3-b] indole, A,C; 2-amino-3-methyl-9H-pyrido-[2,3-b] indole, MeA,C; 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole, Trp-P-1 and 3-amino-1-methyl-5H-pyrido-[4,3-b] indole, Trp-P-2) in commercial meat samples has been developed. This methodology is faster than others previously described. The method is based on the combination of a supercritical fluid extraction procedure, followed by the analysis of the extracted plug by CE with fluorescence detection. The supercritical fluid extraction procedure was optimized for the clean-up of the samples and the extraction of the analytes. For the electrophoretic separation, the effect of composition, pH and concentration of buffer, organic modifier content, pressure and time of injection, capillary temperature and voltage applied were studied. A 10,mmol/L formic acid,ammonium formate,ACN (10%, v/v) solution at pH 1.5 was selected as the running electrolyte. With 5-s hydrodynamic injection, linear responses in the range from 100 to 1000,ng/mL and detection limits ranging from 15.9 to 28.1,ng/mL were obtained for different amines in less than 13,min. ACN,water (1:1 in volume) was used as a sample solvent. Fluorescence detection enhances the sensitivity and avoids interferences coming from non-fluorescent compounds present in the matrices of the sample extracts. [source]


    Use of coated capillaries for the electrophoretic separation of stereoisomers of a growth hormone secretagogue

    ELECTROPHORESIS, Issue 21 2009
    Reine Nehmé
    Abstract The diastereoisomeric separation of peptidomimetics of hexarelin, a strong growth hormone secretagogue, in CE has been studied. Highly sulfated-,-CD was found to be an appropriate selector for the separation of the stereoisomers. However, non-repeatable analyses were obtained on bare fused silica capillary due to the progressive adsorption of the analytes on the capillary wall. Two types of polyelectrolyte coating agents were tested to prevent this phenomenon. Coating with neutral polyethylene oxide was found to be efficient but resulted in a very long analysis time (about 40,min). Coating with cationic poly(diallyldimethylammonium) chloride was found both to prevent analyte adsorption, reduce analysis time and alter separation selectivity. EOF measurement revealed that the highly sulfated-,-CDs were strongly adsorbed on the poly(diallyldimethylammonium) chloride coating surface yielding a stable strong cathodic EOF, which considerably reduced analysis time (about 12,min). Very good repeatability of analysis was obtained (RSDmigration time<1%). [source]


    Novel negatively charged tentacle-type polymer coating for on-line preconcentration of proteins in CE

    ELECTROPHORESIS, Issue 4 2009
    Liang Xu
    Abstract A novel negatively charged tentacle-type polymer-coated capillary column was fabricated and applied for on-line extraction and preconcentration of proteins. The polymer coating was prepared by glycidyl-methacrylate graft polymerization in a silanized capillary column and the following sulfonic acid group functionalization. It had high surface area and offered high phase ratio for protein adsorption. In addition, the polymer-coated capillary column provided more stable EOF than a bare uncoated capillary. These features of the polymer coating facilitated the extraction of proteins through electrostatic interactions. This was used to extract proteins. The extracted analytes were then desorbed and focused by EOF in the direction opposite to the sample injection flow for subsequent CE. With this procedure, over 1500-fold sensitivity enhancement was realized for myoglobin (MB) as compared with a normal capillary zone electrophoresis. By comparison of the peak areas of the enriched protein, it was found that the polymer-coated column could capture proteins about 30 times more than the uncoated column. In addition, the separation of a protein mixture containing 0.4,,g/mL of MB and 0.4,,g/mL of insulin was demonstrated by the on-line preconcentration and electrophoretic separation with the polymer-coated column. [source]


    Realistic simulations of combined DNA electrophoretic flow and EOF in nano-fluidic devices

    ELECTROPHORESIS, Issue 24 2008
    Duc Duong-Hong
    Abstract We present a three-dimensional dissipative particle dynamics model of DNA electrophoretic flow that captures both DNA stochastic motion and hydrodynamics without requiring expensive molecular dynamics calculations. This model enables us to efficiently and simultaneously simulate DNA electrophoretic flow and local EOF (generated by counterions near the DNA backbone), in mesoscale (,,m) fluidic devices. Our model is used to study the electrophoretic separation of long DNA chains under entropic trapping conditions [Han and Craighead, Science 2000, 288, 1026,1029]. Our simulation results are in good agreement with experimental data for realistic geometries (tapered walls) and reveal that wall tapering in entropic traps has a profound impact in the DNA trapping behavior, an effect which was largely ignored in previous modeling. [source]


    Nanostructured copolymer gels for dsDNA separation by CE

    ELECTROPHORESIS, Issue 23 2008
    Fen Wan
    Abstract Pluronics are triblock copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) that are able to form many different ordered nanostructures at appropriate polymer concentrations and temperatures in selective solvents. These nanostructured "gels" showed desirable criteria when used as DNA separation media, especially in microchip electrophoresis, including dynamic coating and viscosity switching. A ternary system of F127 (E99P69E99)/TBE buffer/1-butanol was selected as a model system to test the sieving performance of different nanostructures in separating dsDNA by CE. The nanostructures and their lattice constants were determined by small-angle X-ray scattering. Viscosity measurements showed the sol,gel transition phenomena. In addition to the cubic structure, successful electrophoretic separation of dsDNA in 2-D hexagonally packed cylinders was achieved. Results showed that without further optimization, ,X174 DNA,Hae III digest was well separated within 15,min in a 7-cm separation channel, by using F127/TBE/1-butanol gel with a 2-D hexagonal structure. A mechanism for DNA separations by those gels with both hydrophilic and hydrophobic domains is discussed. [source]


    Length-dependent DNA separations using multiple end-attached peptide nucleic acid amphiphiles in micellar electrokinetic chromatography

    ELECTROPHORESIS, Issue 13 2008
    Jeffrey M. Savard
    Abstract End-labeled free-solution electrophoresis (ELFSE) is an alternative approach to gel-based methods for size-based electrophoretic separation of DNA. In ELFSE, an electrically neutral "drag-tag" is appended to DNA to add significant hydrodynamic drag, thereby breaking its constant charge-to-friction ratio. Current drag-tag architecture relies on covalent attachment of polymers to each DNA molecule. We have recently proposed the use of micellar drag-tags in conjunction with sequence-specific hybridization of peptide nucleic acid amphiphiles (PNAAs). This work investigates the effect of multiple PNAA attachment on DNA resolution using MEKC. Simultaneous PNAA hybridization allows for the separation of long DNA targets, up to 1012,bases, using micellar drag-tags. Each PNAA handle independently interacts with the micellar phase, reducing the overall mobility of this complex relative to individual PNAA binding. The sequence- and size-based dependence of this separation technique is maintained with multiple PNAA binding over a range of DNA sizes. Results are accurately described by ELFSE theory, yielding , = 54 for single-micelle tagging and , = 142 for dual-micelle tagging. This method is the first example of a non-covalent drag-tag used to separate DNA of 1000,bases based on both size and sequence. [source]


    Capillary electrophoretic separation of biologically active amines and acids using nanoparticle-coated capillaries

    ELECTROPHORESIS, Issue 9 2008
    Yu-Fen Huang
    Abstract This manuscript describes dynamic coating of capillaries with poly(L -lysine) (PLL) and silica nanoparticles (SiO2 NPs) and use of the as-prepared capillaries for the separation of biogenic amines and acids by CE in conjunction with LIF detection. The directions of EOF are controlled by varying the outmost layer of the capillaries with PLL and SiO2 NPs, respectively. Over the pH range 3.0,5.0, the (PLL,SiO2NP)n,PLL capillaries have an EOF toward the anodic end and are more suitable for the separation of acids with respect to speed, while the (PLL,SiO2NP)n capillaries have an EOF toward the cathodic end and are more suitable for the separation of biogenic amines regarding speed and sensitivity. The separations of standard solutions containing five amines and two acids by CE with LIF detection using (PLL,SiO2NP)2,PLL and (PLL,SiO2NP)3 capillaries were accomplished within 10 and 7,min, providing plate numbers of 3.8 and 5.0×104,plates/m for 5-hydroxytryptamine (5-HT), respectively. The LODs for 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) are 32 and 2,nM and 0.2 and 1.5,nM when using the (PLL,SiO2NP)2,PLL and (PLL,SiO2NP)3 capillaries, respectively. Identification and quantification of 5-HIAA, homovanillic acid, and DL -vanillomandelic acid in urine samples from a male before and after drinking green tea were tested to validate practicality of the present approach. The results show that the (PLL,SiO2NP)2,PLL capillary provides greater resolving power, while the (PLL,SiO2NP)3 capillary provides better sensitivity, higher efficiency, and longer durability for the separation of the amines and acids. [source]


    Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection

    ELECTROPHORESIS, Issue 4 2008
    Carl I. D. Newman
    Abstract A microchip device is demonstrated for the electrophoretic separation and UV-absorbance spectral detection of four toxic alkaloids: colchicine, aconitine, strychnine, and nicotine. A fused-silica (quartz) microchip containing a simple cross geometry is utilized to perform the separations, and a miniature, fiber-optic CCD spectrometer is coupled to the microchip for detection. Sensitive UV-absorbance detection is achieved via the application of online preconcentration techniques in combination with the quartz microchip substrate which contains an etched bubble-cell for increased pathlength. The miniature CCD spectrometer is configured to detect light between 190 and 645,nm and LabView programming written in-house enables absorbance spectra as well as separations to be monitored from 210 to 400,nm. Consequently, the configuration of this microchip device facilitates qualitative and quantitative separations via simultaneous spatial and spectral resolution of solutes. UV-absorbance limits of quantification for colchicine, 20,,M (8,mg/L); strychnine, 50,,M (17,mg/L); aconitine, 50,,M (32,mg/L); and nicotine, 100,,M (16,mg/L) are demonstrated on the microchip. With the exception of aconitine, these concentrations are ,20-times more sensitive than lethal dose monitoring requirements. Finally, this device is demonstrated to successfully detect each toxin in water, skim milk, and apple juice samples spiked at sublethal dose concentrations after a simple, SPE procedure. [source]


    Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS

    ELECTROPHORESIS, Issue 22 2007
    Jing-Huan Chen
    Abstract A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I, and IO3,) and bromine (Br, and BrO3,) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50,cm length×75,,m id fused-silica capillary. The electrophoretic buffer used is 10,mmol/L Tris (pH,8.0), while the applied voltage is set at ,8,kV. Detection limits are 1 and 20,50,ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1,,g/mL I,, IO3, and 1,,g/mL Br,, BrO3, mixture is in the range of 3,5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10,min. The spike recoveries are in the range of 94,105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br,, IO3,, I,, and Br,, respectively. [source]


    CE- and HPLC-TOF-MS for the characterization of phenolic compounds in olive oil

    ELECTROPHORESIS, Issue 5 2007
    Alegría Carrasco-Pancorbo
    Abstract We present an easy and rapid method for the analysis of phenolic compounds in extra-virgin olive oil by CZE coupled with ESI-TOF-MS. Optimum electrophoretic separation was obtained using a basic carbonate electrolyte. We thus achieved the determination of several important families (phenyl alcohols, phenyl acids, lignans, flavonoids, and secoiridoids) of the polar fraction of the olive oil. Furthermore, other "unknown" compounds were also identified. In addition to the CZE method, HPLC analyses were made, separating compounds belonging to the main families present in this polyphenolic fraction, as well as other new compounds. We compared the results obtained with both techniques and found it was possible to determine more than 45 compounds with both methods. The sensitivity, together with mass accuracy and true isotopic pattern of the TOF-MS, allowed the identification of a broad series of known and so far not described phenolic compounds present in extra-virgin olive oil. [source]


    A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis

    ELECTROPHORESIS, Issue 13 2006
    Wei Wang Dr.
    Abstract A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis. [source]


    Separation of phenolic acids by capillary electrophoresis with indirect contactless conductometric detection

    ELECTROPHORESIS, Issue 7 2006
    Petr Kubá
    Abstract A new method for the electrophoretic separation of nine phenolic acids (derivatives of benzoic and cinnamic acids) with contactless conductometric detection is presented. Based on theoretical calculations, in which the mobility of the electrolyte co- and counterions and mobility of analytes are taken into consideration, the electrolyte composition and detection mode was selected. This approach was found to be especially valuable for optimization of the electrolyte composition for the separation of analytes having medium mobility. Indirect conductometric detection mode was superior to the direct mode as predicted theoretically. The best performance was achieved with 150,mM 2-amino-2-methylpropanol electrolyte at pH,11.6. The separation was carried out in a counter-electroosmotic mode and completed in less than 6,min. The LODs achieved were about 2.3,3.3,,M and could be further improved to 0.12,0.17,,M by using a sample stacking procedure. The method compares well to the UV-Vis detection. [source]


    Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip

    ELECTROPHORESIS, Issue 24 2005
    Sara Thorslund
    Abstract A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270,V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities. [source]


    Determination of tryptamine derivatives in illicit synthetic drugs by capillary electrophoresis and ultraviolet laser-induced fluorescence detection

    ELECTROPHORESIS, Issue 12 2005
    Carolin Huhn
    Abstract A method based on separation by capillary electrophoresis combined with UV-laser-induced fluorescence detection (,ex,=,266,nm) was developed for the determination of nine tryptamine derivatives of forensic interest and potential matrix constituents. The composition of the separation electrolyte was optimized with respect to the resolution of solutes of interest and to the sensitivity of fluorescence detection. Native ,-cyclodextrin was employed as a complex forming modifier of the electrophoretic separation and fluorescence-enhancing agent. With the help of a stacking procedure, limits of detection of 0.1,6,µg/L for all analytes were obtained. The repeatability for the peak area (at a concentration of the analyte about 100 times the LOD) was less than 2.3%,RSD. A second HPLC method was developed, and its analytical parameters were evaluated for an estimation of the accuracy of the CE-LIF method and for method comparison. The results of the determination of tryptamine derivatives in the samples of forensic interest obtained with the two independent methods are in good agreement. [source]


    Nonaqueous capillary electrophoretic separation of polyphenolic compounds in wine using coated capillaries at high pH in methanol

    ELECTROPHORESIS, Issue 24 2003
    Zuzana Demianová
    Abstract Nonaqueous capillary electrophoretic separation of a group of flavonoids (quercetin, myricetin, catechin, epicatechin) and resveratrol in wine was investigated in methanol at high pH. Malonate background electrolyte (pH* 13.5, ionic strength I = 14.2 mmol/L) provided highly repeatable separations of the analytes. Tests of untreated and coated (poly(glycidylmethacrylate- co - N -vinylpyrrolidone)) capillaries showed the analysis to be faster (6.5 min vs. 25 min) and the repeatability better in the coated capillaries. The coating procedure was simple and highly repeatable and the coating was stable during 40,45 runs. Determination of the last migrating peaks (epicatechin, resveratrol and catechin) was achieved merely by evaporating the wine samples and reconstituting the residue in methanol. For determination of the first migrating peaks (quercetin and myricetin) the samples were submitted to solid-phase extraction in C8 cartridges. [source]


    Detection of chlorinated quinones using interdigitated electrodes coupled with capillary electrophoresis

    ELECTROPHORESIS, Issue 6 2003
    Keith B. Male
    Abstract An array of eight interdigitated microband gold electrodes (IDEs) has been developed together with electrophoretic separation for analysis of chlorinated hydroquinones (ClHQs) and benzoquinones (ClBQs). The IDE chip positioned very close to the separation capillary outlet served as an amplification/detection system without the requirement for frequent "capillary-electrode" alignment. ClHQs, electrophoretically migrating to the IDE surface, were oxidized at +1.1 V by seven electrodes of the array and then detected by the remaining electrode, poised at ,0.1 V. Conversely, ClBQs were detected at +1.1 V by the detecting electrode after having been reduced at the 7 adjacent electrodes poised at ,0.1 V. There was an amplification effect on both the detecting electrode as well as the adjacent electrodes because of the recycle between ClHQs and ClBQs. The detecting "amplification" current response was dependent on the potentials applied, the position of the detecting electrode on the array, the number of adjacent electrodes being used for recycling and the distance between the oxidative and reductive electrodes. Micellar electrokinetic chromatography (MEKC) separation of the analytes was achieved using 30 mM sodium dodecyl sulfate (SDS) with a detection limit in the range of 2,20 ,M. In addition to a facile "capillary-electrode" alignment, the important aspect described here was the capability of detecting through recycling a reduced compound (in the case of ClHQs) at a negative potential to circumvent fouling and electroactive interferences. An appealing feature was also the concurrent oxidation/reduction detection for each compound to ascertain peak assignment, as interfering compounds are less likely to exhibit the same oxidative/reductive characteristics and electrophoretic mobilities as the target analytes. [source]


    Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection

    ELECTROPHORESIS, Issue 4 2003
    Pavel Coufal
    Abstract Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. [source]


    Indirect laser-induced fluorescence detection for capillary electrophoresis using a frequency-doubled diode laser

    ELECTROPHORESIS, Issue 3 2003
    Natalia Ragozina
    Abstract A blue (452 nm) frequency-doubled diode laser with a quasi-cw optical output power of 10 ,W is used for indirect laser-induced fluorescence detection in combination with the capillary electrophoretic separation of inorganic anions. As fluorescing probe ion the anion of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) was selected having an absorption maximum of 454 nm in alkaline medium. Employing a capillary coated with linear acrylamide, baseline separation of eight inorganic anions was possible within 5 min. With a separation buffer containing 50 ,mol·L -1 HPTS and 10 mmol·L -1 lysine the limits of detection for sulfate, nitrite, nitrate, azide, thiocyanate, and chlorate were between 0.9 and 4.7 ,mol·L -1. Separation of chloride and sulfate was achieved by adding 0.25 mmol·L -1 calcium hydroxide to the separation buffer. Inorganic anions in several mineral and tap water samples have been determined with the technique developed and results are compared to data obtained by ion chromatography in combination with conductivity detection after conductivity suppression. [source]


    Cover Picture: Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2005
    Mater.
    Abstract A composite image is shown that highlights examples of device architectures that either incorporate or exploit polymer-embedded metallic microstructures. In work reported by Nuzzo and co-workers on p.,557, new applications of soft lithography, in conjunction with advanced forms of multilayer metallization, are used to construct these exceptionally durable structures. They are suitable for use in non-planar lithographic patterning, and as device components finding applications ranging from microelectronics to Lab-on-a-Chip analytical systems. This article describes the fabrication of durable metallic patterns that are embedded in poly(dimethylsiloxane) (PDMS) and demonstrates their use in several representative applications. The method involves the transfer and subsequent embedding of micrometer-scale gold (and other thin-film material) patterns into PDMS via adhesion chemistries mediated by silane coupling agents. We demonstrate the process as a suitable method for patterning stable functional metallization structures on PDMS, ones with limiting feature sizes less than 5,,m, and their subsequent utilization as structures suitable for use in applications ranging from soft-lithographic patterning, non-planar electronics, and microfluidic (lab-on-a-chip, LOC) analytical systems. We demonstrate specifically that metal patterns embedded in both planar and spherically curved PDMS substrates can be used as compliant contact photomasks for conventional photolithographic processes. The non-planar photomask fabricated with this technique has the same surface shape as the substrate, and thus facilitates the registration of structures in multilevel devices. This quality was specifically tested in a model demonstration in which an array of one hundred metal oxide semiconductor field-effect transistor (MOSFET) devices was fabricated on a spherically curved Si single-crystalline lens. The most significant opportunities for the processes reported here, however, appear to reside in applications in analytical chemistry that exploit devices fabricated using the methods of soft lithography. Toward this end, we demonstrate durably bonded metal patterns on PDMS that are appropriate for use in microfluidic, microanalytical, and microelectromechanical systems. We describe a multilayer metal-electrode fabrication scheme (multilaminate metal,insulator,metal (MIM) structures that substantially enhance performance and stability) and use it to enable the construction of PDMS LOC devices using electrochemical detection. A polymer-based microelectrochemical analytical system, one incorporating an electrode array for cyclic voltammetry and a microfluidic system for the electrophoretic separation of dopamine and catechol with amperometric detection, is demonstrated. [source]


    Detection of adulterations in processed coffee with cereals and coffee husks using capillary zone electrophoresis

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 20 2009
    Thiago Nogueira
    Abstract The proposed method for the identification of adulteration was based on the controlled acid hydrolysis of xylan and starch present in some vegetable adulterants, followed by the analysis of the resulting xylose and glucose, which are the monosaccharides that compose, respectively, the two polysaccharides. The acid hydrolysis with HCl increases the ionic strength of the sample, which impairs the electrophoretic separation. Thus, a neutralization step based on anion exchange resin was necessary. The best separations were obtained in NaOH 80 mmol/L, CTAB 0.5 mmol/L, and methanol 30% v/v. Because of the high value of pH, monosaccharides are separated as anionic species in such running electrolyte. The LOQ for both monosaccharides was 0.2 g for 100 g of dry matter, which conforms to the tolerable limits. [source]


    Application of cyclodextrins as modifiers in electrophoretic separation of metalloporphyrins

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 2 2006
    Krystyna Pyrzy
    Abstract Several metallocomplexes of tetrakis -carboxyphenylporphyrin (TCPP) were separated on fused-silica capillary using CZE with UV-VIS detection. Metalloporphyrins of Co(II), Cu(II), Mn(II), Ni(II), and Zn(II) were formed directly in TCPP solution with addition of Cd(II) to increase the formation reaction rate. The composition of BGE, its concentration, and pH were optimized to ensure the stability of complexes and proper resolution. In particular, the problem of signals' shape was investigated and discussed. The presence of ,-CD in borate buffer significantly improved separation efficiency and signal shapes due to formation of inclusion complexes. Under the best separation conditions (50 mM borate running buffer at pH 9 with addition of 2 mM ,-CD, 30 kV applied voltage) a separation of metal complexes with TCPP was accomplished in 16 min. [source]


    Capillary electrophoretic separation and fractionation of hydrophobic peptides onto a pre-structured matrix assisted laser desorption/ionization target for mass spectrometric analysis

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 2 2006
    Johan Jacksén
    Abstract A CE separation of hydrophobic peptides followed by fractionation onto a prestructured MALDI target and off-line MS analysis was performed. An improved and partially automated manufacturing procedure of the previously described MALDI target is presented. This target is structurally coated with silicone and especially developed for hydrophobic peptides and proteins. Here, the target plate was designed specifically for the CE fraction collection. Different solvents were evaluated to meet the requirements of peptide solubility and compatibility to both the CE and MALDI methods and to the fractionation procedure. CE-MALDI-MS analysis of nine highly hydrophobic peptides from cyanogen bromide-digested bacteriorhodopsin is demonstrated. [source]


    Capillary Zone Electrophoresis of some organic acids in milk whey

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 5 2003
    Francesca Buiarelli
    Abstract This paper describes a method for analysing some acids of milk whey by Capillary Zone Electrophoresis. After eliminating the whey proteins by ultrafiltration, the whey underwent electrophoretic separation in the presence of anodic electroosmotic flow. The following analytes were detected: citric, orotic, uric, and hippuric acids. A procedure is described for sample preparation and the operating conditions for electrophoretic capillary separation established. Finally, orotic acid is quantitatively determined. [source]


    Application of capillary electrophoresis mass spectrometry to the characterization of bacterial lipopolysaccharides

    MASS SPECTROMETRY REVIEWS, Issue 1 2007
    Jianjun Li
    Abstract Capillary electrophoresis (CE) is a high-resolution technique for the separation of complex biological mixtures and has been widely applied to biological analyses. The coupling of capillary electrophoresis with mass spectrometry (MS) provides a powerful approach for rapid identification of target analytes present at trace levels in biological matrices, and for structural characterization of complex biomolecules. Here we review the analytical potential of combined capillary electrophoresis electrospray mass spectrometry (CE-MS) for the analysis of bacterial lipopolysaccharides (LPS). This hyphened methodology facilitates the determination of closely related LPS glycoform and isoform families by exploiting differences in their unique molecular conformations and ionic charge distributions by electrophoretic separation. On-line CE-MS also provides an additional avenue to improve detection limits, which has been successfully applied to directly probe oligosaccharide LPS glycoform populations of bacteria isolated from infected animal models without the need for further passage. © 2006 Wiley Periodicals, Inc., Mass Spec Rev 26:35,50, 2007 [source]