Electrophoretic Mobility Shift (electrophoretic + mobility_shift)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii

FEBS JOURNAL, Issue 24 2000
Hwan Young Lee
A novel gene, matR, located upstream of matABC, transcribed in the opposite direction, and encoding a putative regulatory protein by sequence analysis was discovered from Rhizobium leguminosarum bv. trifolii. The matA, matB, and matC genes encode malonyl-CoA decarboxylase, malonyl-CoA synthetase, and a presumed malonate transporter, respectively. Together, these enzymes catalyze the uptake and conversion of malonate to acetyl-CoA. The deduced amino-acid sequence of matR showed sequence similarity with GntR from Bacillus subtilis in the N-terminal region encoding a helix-turn-helix domain. Electrophoretic mobility shift assay indicated that MatR bound to a fragment of DNA corresponding to the mat promoter region. The addition of malonate or methylmalonate increased the association of MatR and DNA fragment. DNase I footprinting assays identified a MatR binding site encompassing 66 nucleotides near the mat promoter. The mat operator region included an inverted repeat (TCTTGTA/TACACGA) centered ,46.5 relative to the transcription start site. Transcriptional assays, using the luciferase gene, revealed that MatR represses transcription from the mat promoter and malonate alleviates MatR-mediated repression effect on the expression of Pmat -luc+ reporter fusion. [source]


IFN-,-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes

GLIA, Issue 3 2007
Hyun Jin Cho
Abstract ,-Site APP cleaving enzyme 1 (BACE1) is an essential enzyme for the production of , amyloid. Since we found that injection of interferon-, (IFN-,) into young mouse brains increased BACE1 expression in astrocytes, we investigated molecular mechanisms underlying this process by cloning a putative BACE1 promoter. BACE1 promoter activity was differentially regulated by IFN-, in a region specific manner and down-regulated by an inhibitor of Janus kinase 2 (JAK2). A dominant negative mutant of signal transducer and activator of transcription 1 (STAT1) expression suppressed BACE1 promoter activity, and this was rescued by transfecting wild type STAT1. Electrophoretic mobility shift assay and promoter activity assays indicated that STAT1 binds directly to the putative STAT1 binding sequence of BACE1 promoter. Because IFN-, treatment induced STAT1 phosphorylation, we examined whether the expression of a suppressor of cytokine signaling (SOCS), negative regulator of JAK2, suppresses BACE1 promoter activity. The results show that SOCS1 or SOCS3 expression suppressed BACE1 promoter by blocking phosphorylation of Tyr701 residue in STAT1. Also, because IFN-, treatment specifically potentiated extracellular signal regulated MAP kinase (ERK) 1/2 activation, pretreatment of mitogen-activated or extracellular signal-regulated protein kinase (MEK) inhibitor, PD98059, significantly attenuated IFN-,-induced BACE1 promoter activity and protein expression through blocking phosphorylation of Ser727 residue in STAT1, suggesting that ERK1/2 is associated with IFN-,-induced STAT1 signaling cascade. Taken together, our results suggest that IFN-, activates JAK2 and ERK1/2 and then phosphorylated STAT1 binds to the putative STAT1 binding sequences in BACE1 promoter region to modulate BACE1 protein expression in astrocytes. © 2006 Wiley-Liss, Inc. [source]


Functional analysis of promoter variants in the microsomal triglyceride transfer protein (MTTP) gene,

HUMAN MUTATION, Issue 1 2008
Diana Rubin
Abstract The microsomal triglyceride transfer protein (MTTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from the intestine and liver. According to this function, polymorphic sites in the MTTP gene showed associations to low-density lipoprotein (LDL) cholesterol and related traits of the metabolic syndrome. Here we studied the functional impact of common MTTP promoter polymorphisms rs1800804:T>C (,164T>C), rs1800803:A>T (,400A>T), and rs1800591:G>T (,493G>T) using gene-reporter assays in intestinal Caco-2 and liver Huh-7 cells. Significant results were obtained in Huh-7 cells. The common MTTP promoter haplotype ,164T/,400A/,493G showed about two-fold lower activity than the rare haplotype ,164C/,400T/,493T. MTTP promoter mutant constructs ,164T/,400A/,493T and ,164T/,400T/,493T exhibited similar activity than the common haplotype. Activities of mutants ,164C/,400A/,493G and ,164C/,400A/,493T resembled the rare MTTP promoter haplotype. Electrophoretic mobility shift assays (EMSAs) revealed higher binding capacity of the transcriptional factor Sterol regulatory element binding protein1a (SREBP1a) to the ,164T probe in comparison to the ,164C probe. In conclusion, our study indicates that the polymorphism ,164T>C mediates different activities of common MTTP promoter haplotypes via SREBP1a. This suggested that the already described SREBP-dependent modulation of MTTP expression by diet is more effective in ,164T than in ,164C carriers. Hum Mutat 29(1), 123,129, 2008. © 2007 Wiley-Liss, Inc. [source]


Acholeplasma laidlawii up-regulates granulysin gene expression via transcription factor activator protein-1 in a human monocytic cell line, THP-1

IMMUNOLOGY, Issue 3 2001
Yutaka Kida
Summary An antimicrobial protein granulysin is constitutively expressed in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. However, little is known about the precise regulatory mechanisms underlying granulysin gene expression. In this study, we examined the regulatory mechanisms underlying granulysin gene expression using a human monocytic cell line, THP-1, treated with Acholeplasma laidlawii. The level of granulysin mRNA expression in THP-1 cells was significantly augmented in response to stimulation with A. laidlawii. The transfection of reporter gene constructs into THP-1 cells indicated that DNA sequences between residues ,329 and ,239, relative to the transcriptional start site of the granulysin gene, are responsible for mediating gene induction. In addition, mutagenesis of a putative activator protein-1 (AP-1)-binding site between residues ,277 and ,271 in the granulysin promoter resulted in the reduction of granulysin promoter activity. Electrophoretic mobility shift assays (EMSA) demonstrated that nuclear extract prepared from A. laidlawii- treated THP-1 cells can generate specific binding to DNA oligonucleotides encompassing the AP-1-binding site, whereas unstimulated nuclear extract from the cells failed to do so. Furthermore, competition and supershift assays confirmed that A. laidlawii can induce the activation of AP-1. These results indicate that AP-1 dominantly participates in the regulation of inducible granulysin gene expression in THP-1 cells. Therefore, the finding of inducible granulysin gene expression by A. laidlawii suggests that inducible granulysin in macrophages may function as a protective weapon when microbial invasion occurs. [source]


Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1

INFLAMMATORY BOWEL DISEASES, Issue 2 2004
Thomas Menzel MD
Abstract Background Leukocyte recruitment to areas of inflammation depends on Integrin-VCAM/ICAM interaction. Blocking the vascular cell adhesion molecule (VCAM-1) and the intracellular adhesion molecule (ICAM-1) may have therapeutic benefit for the inflammatory component of bowel disease. Notably, the induction of ICAM and VCAM is mediated by a nuclear factor kappaB (NF-,B)-dependent mechanism. We investigated whether the anti-inflammatory properties of butyrate are mediated via the modulation of VCAM and ICAM on human endothelial cells. Methods VCAM-1 and ICAM-1 expression on human endothelial cells upon tumor necrosis factor-, (TNF-,) stimulation was assessd by FACS analysis. A monocyte adhesion assay was performed to evaluate the relevance of a modulated CAM-expression. Electrophoretic mobility shift assays were applied to investigate NF-,B activation. Results The observed butyrate-associated inhibition of monocyte adhesion to endothelial cells is associated with an inhibition of NF-,B activation in human endothelial cells. In this context, the observed suppression of the TNF-, induced VCAM-1 expression is likely to play an essential role. Conclusions Butyrate inhibits VCAM-1 mediated leukocyte adhesion to human endothelial cells. This inhibition may contribute to the anti-inflammatory effects of butyrate in patients with distal ulcerative colitis. [source]


CREB Cooperates with BMP-stimulated Smad signaling to enhance transcription of the Smad6 promoter

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
Andreia M. Ionescu
Growth plate chondrocytes integrate a multitude of growth factor signals during maturation. PTHrP inhibits maturation through stimulation of PKA/CREB signaling while the bone morphogenetic proteins (BMPs) stimulate maturation through Smad mediated signaling. In this manuscript, we show that interactions between CREB and the BMP associated Smads are promoter specific, and demonstrate for the first time the requirement of CREB signaling for Smad mediated activation of a BMP responsive region of the Smad6 promoter. The 28 base pairs (bp) BMP responsive element of the Smad6 promoter contains an 11 bp Smad binding region and an adjacent 17 bp region in which we characterize a putative CRE site. PKA/CREB gain of function enhanced BMP stimulation of this reporter, while loss of CREB function diminished transcriptional activity. In contrast, ATF-2 and AP-1 transcription factors had minimal effects. Electrophoretic mobility shift assay (EMSA) confirmed CREB binding to the Smad6 promoter element. Mutations eliminating binding resulted in loss of transcriptional activity, while mutations that maintained CREB binding had continued reporter activation by CREB and BMP-2. The Smad6 gene was similarly regulated by CREB. Dominant negative CREB reduced BMP-2 stimulated Smad6 gene transcription by 50%, but markedly increased BMP-2 mediated stimulation of colX and Ihh expression. In contrast, PTHrP which activates CREB signaling, blocked the stimulatory effect of BMP-2 on colX and Ihh, but minimally inhibited the stimulatory effect of BMP on Smad6. These findings are the first to demonstrate a cooperative association between CREB and BMP regulated Smads in cells from vertebrates and demonstrate that promoter-specific rather than generalized interactions between PKA/CREB and BMP signaling regulate gene expression in chondrocytes. J. Cell. Physiol. 198: 428,440, 2004© 2003 Wiley-Liss, Inc. [source]


Hepatitis C virus core protein induces malignant transformation of biliary epithelial cells by activating nuclear factor-,B pathway

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2010
Zhi-Hua Li
Abstract Background and Aim:, In an earlier study, we found that hepatitis C virus core protein, HCV-C, participated in the malignant transformation of HCV-C transfected normal human biliary epithelial (hBE) cells by activating telomerase. Here we further investigated the signaling of the malignant transformation. Methods:, Reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunoprecipitation were used to analyze the expression of HCV-C, human telomerase reverse transcriptase (hTERT), nuclear factor-,B (NF-,B) and NF-,B inhibitor alpha (I,B,) genes and the phosphorylation level of I,B, protein. Electrophoretic mobility shift assays (EMSA) and NF-,B-linked luciferase reporter assays were carried out to measure NF-,B activity. Results:, The expression of HCV-C and hTERT was detected only in HCV-C-transfected hBE (hBE-HCV-C) cells but not in vector-transfected or parental hBE cells. More NF-,B protein accumulated in nuclear extracts of hBE-HCV-C cells rather than in those of control cells, though total NF-,B protein level showed no difference among these cells. DNA binding activity of NF-,B and the NF-,B-linked luciferase activity were much higher in HCV-C-transfected hBE cells than those in vector- or non-transfected hBE cells. In addition, the I,B, phosphorylation level, but not the I,B, mRNA or protein levels, was increased after HCV-C transfection. Conclusions:, Hepatitis C virus core protein activates NF-,B pathway in hBE cells by increasing the phosphorylation of I,B,. The pathway may be responsible for HCV-C-induced malignant transformation of hBE cells. [source]


Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Maria João Nunes
J. Neurochem. (2010) 113, 418,431. Abstract We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors. [source]


Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Chiara Gabellini
Abstract We recently reported that bcl-xL regulates interleukin 8 (CXCL8) protein expression and promoter activity in glioblastoma cells. In this paper we demonstrate that CXCL8 induction by bcl-xL is mediated through a nuclear factor-kappa B (NF-kB)-dependent mechanism. Mutational studies on the CXCL8 promoter showed that NF-kB binding site was required for bcl-xL-induced promoter activity and an enhanced nuclear expression of NF-kB subunits p65 and p50 was observed after bcl-xL over-expression. Electrophoretic mobility shift assay showed an increased DNA-binding activity of NF-kB in bcl-xL over-expressing cells and the use of specific antibodies confirmed the involvement of p65 and p50 in NF-kB activity on CXCL8 promoter sequence. NF-kB activity regulation by bcl-xL involved IkB, and IKK complex signaling pathway. In fact, bcl-xL over-expression induced a decrease of cytoplasmic expression of the IkB, protein, paralleled by an increase in the phosphorylation of the same IkB, and IKK,/,. Moreover, the down-regulation of the ectopic or endogenous bcl-xL expression through RNA interference confirmed the ability of bcl-xL to modulate NF-kB pathway, and the transient expression of a degradation-resistant form of the cytoplasmic NF-kB inhibitor IkB, in bcl-xL transfectants confirmed the involvement of that inhibitor in bcl-xL-induced CXCL8 expression and promoter activity. In conclusion, our results demonstrate the role of NF-kB as the mediator of bcl-xL-induced CXCL8 up-regulation in glioblastoma cells. [source]


Proteomic analysis of nuclear factors binding to an intronic enhancer in the myelin proteolipid protein gene

JOURNAL OF NEUROCHEMISTRY, Issue 5 2008
Anna Dobretsova
Abstract The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated , peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Pur, and Pur, rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. [source]


Hypoxia-inducible factor and nuclear factor kappa-B activation in blood,brain barrier endothelium under hypoxic/reoxygenation stress

JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
Ken A. Witt
Abstract This investigation focuses on transcription factor involvement in blood,brain barrier (BBB) endothelial cell-induced alterations under conditions of hypoxia and post-hypoxia/reoxygenation (H/R), using established in vivo/ex vivo and in vitro BBB models. Protein/DNA array analyses revealed a correlation in key transcription factor activation during hypoxia and H/R, including NF,B and hypoxia-inducible factor (HIF)1. Electrophoretic mobility shift assays confirmed NF,B and HIF1 binding activity ex vivo and in vitro, under conditions of hypoxia and H/R. Hypoxia- and H/R-treated BBB endothelium showed increased HIF1, protein expression in both cytoplasmic and nuclear fractions, in ex vivo and in vitro models. Co-immunoprecipitation of HIF1, and HIF1, was shown in the nuclear fraction under conditions of hypoxia and H/R in both models. Hypoxia- and H/R-treated BBB endothelium showed increased expression of NF,B-p65 protein in both cytoplasmic and nuclear fractions. Co-immunoprecipitation of NF,B-p65 with NF,B-p50 was shown in the nuclear fraction under conditions of hypoxia and H/R in the ex vivo model, and after H/R in the in vitro model. These data offer novel avenues in which to alter and/or investigate BBB activity across model systems and to further our understanding of upstream regulators during hypoxia and H/R. [source]


Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Seon-Young Kim
Abstract Excitatory amino acid transporter 1 (EAAT1) is one of the two glial glutamate transporters that clear the extracellular glutamate generated during neuronal signal transmission. Here, we cloned and characterized a 2.1-kb promoter region of human EAAT1 and investigated its function in the transcriptional regulation of the EAAT1 gene in human primary astrocytes. The full-length promoter region lacked TATA and CCAAT boxes and an initiator element, it contained several potential transcription factor-binding sites and it exhibited promoter activity in primary astrocytes and in several types of transformed cells. Consecutive 5,-deletion analysis of the EAAT1 promoter indicated the presence of negative and positive regulatory regions and a putative core promoter between ,57 bp and +20 bp relative to the transcription start site (TSS). The core promoter contained a single GC-box in position ,52/,39 and one E-box near the TSS and the GC-box site that was responsible for 90% of the basal promoter activity as determined by mutational analysis. Electrophoretic mobility shift, supershift and competition assays demonstrated binding of stimulating proteins (Sp) 1 and 3 to the GC-box and upstream stimulating factor (USF) 1 to the E-box. Treatment of primary human astrocytes with cellular modulators 8-bromo cyclic AMP and epidermal growth factor increased EAAT1 promoter activity in transient transfection assays and increased cellular EAAT1 mRNA expression and glutamate uptake by astrocytes. Conversely, tumor necrosis factor-, reduced both EAAT promoter activity and cellular EAAT1 mRNA expression. These results enable studies of transcriptional regulation of EAAT1 gene at the promoter level. [source]


Post-transcriptional regulation of plasminogen activator inhibitor-1 by intracellular iron in cultured human lung fibroblasts,interaction of an 81-kDa nuclear protein with the 3,-UTR

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2005
K. S. RADHA
Summary., The proteinase inhibitor, type-1 plasminogen activator inhibitor (PAI-1), is a major regulator of the plasminogen activator system involved in plasmin formation and fibrinolysis. The present study explores the effects of intracellular iron on the expression of PAI-1 and associated cell-surface plasmin activity in human lung fibroblasts; and reports the presence of a novel iron-responsive protein. ELISA revealed a dose-dependent increase in PAI-1 antigen levels expressed in the conditioned medium of cells treated with deferoxamine, in the three cell lines studied. A concomitant increase in mRNA levels was also observed by Northern analyses. Presaturation with ferric citrate quenched the effect of deferoxamine. Experiments with transcription and translation inhibitors on TIG 3-20 cells demonstrated that intracellular iron modulated PAI-1 expression at the post-transcriptional level with the requirement of de-novo protein synthesis. Electrophoretic mobility shift assay and UV crosslinking assays revealed the presence of an ,,81-kDa nuclear protein that interacted with the 3,-UTR of PAI-1 mRNA in an iron-sensitive manner. Finally, we demonstrated that the increased PAI-1 is functional in suppressing cell-surface plasmin activity, a process that can affect wound healing and tissue remodeling. [source]


Nkx2.1 transcription factor in lung cells and a transforming growth factor-,1 heterozygous mouse model of lung carcinogenesis,

MOLECULAR CARCINOGENESIS, Issue 4 2004
Yang Kang
Abstract The Nkx2.1 homeobox gene and transforming growth factor-,1 (TGF-,1) are essential for organogenesis and differentiation of the mouse lung. NKX2.1 is a marker of human lung carcinomas, but it is not known whether this gene participates in early tumorigenesis. Addition of TGF-,1 to TGF-,1-responsive nontumorigenic mouse lung cells cotransfected with a NKX2.1Luc luciferase reporter and either a Sp1 or Sp3 plasmid showed a significant increase or decrease, respectively, in NKX2.1Luc transcription. Cotransfection of Sp3 and dominant-negative TGF-, type II receptor plasmids negated the effect of Sp1. Cotransfected Sp1 plasmid with either dominant-negative Smad2 or Smad3 or Smad4 plasmids significantly decreased NKX2.1Luc transcription. Electrophoretic mobility shift assays revealed binding of Sp1 and Smad4 to the NKX2.1 promoter. With a TGF-,1 heterozygous mouse model, Nkx2.1 mRNA and protein in lungs of TGF-,1 heterozygous mice were significantly lower compared to wildtype (WT) littermates. Competitive reverse transcription (RT)-polymerase chain reaction (PCR) and immunostaining showed that Nkx2.1 mRNA and protein decreased significantly in adenomas and adenocarcinomas compared to normal lung tissue. Our in vitro data showed that regulation of Nkx2.1 by TGF-,1 occurs through TGF-, type II receptor and Smad signaling, with Sp1 and Sp3 in lung cells. Our in vivo data showed reduced Nkx2.1 in lungs of TGF-,1 heterozygous mice compared to WT mice, that is detectable in adenomas, and that is further reduced in carcinogenesis, and that correlates with reduction of Sp1, Sp3, and Smads in lung adenocarcinomas. Our findings suggest that reduced Nkx2.1 and TGF-,1 signaling components may contribute to tumorigenesis in the lungs of TGF-,1 heterozygous mice. Published 2004 Wiley-Liss, Inc. [source]


The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells,

MOLECULAR CARCINOGENESIS, Issue 3 2002
Manfred Hergenhahn
Abstract To characterize the effects of inhibitors of Epstein-Barr virus (EBV) reactivation, we established Raji DR-LUC cells as a new test system. These cells contain the firefly luciferase (LUC) gene under the control of an immediate-early gene promoter (duplicated right region [DR]) of EBV on a self-replicating episome. Luciferase induction thus serves as an intrinsic marker indicative for EBV reactivation from latency. The tumor promoter 12- O -tetradecanoylphorbol-13-acetate (TPA) induced the viral key activator BamH fragment Z left frame 1 (BZLF1) protein ("ZEBRA") in this system, as demonstrated by induction of the BZLF1 protein-responsive DR promoter upstream of the luciferase gene. Conversely, both BZLF1 protein and luciferase induction were inhibited effectively by the chemopreventive agent curcumin. Semiquantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) further demonstrated that the EBV inducers TPA, sodium butyrate, and transforming growth factor-, (TGF-,) increased levels of the mRNA of BZLF1 mRNA at 12, 24, and 48 h after treatment in these cells. TPA treatment also induced luciferase mRNA with similar kinetics. Curcumin was found to be highly effective in decreasing TPA-, butyrate-, and TGF-,-induced levels of BZLF1 mRNA, and of TPA-induced luciferase mRNA, indicating that three major pathways of EBV are inhibited by curcumin. Electrophoretic mobility shift assays (EMSA) showed that activator protein 1 (AP-1) binding to a cognate AP-1 sequence was detected at 6 h and could be blocked by curcumin. Protein binding to the complete BZLF1 promoter ZIII site (ZIIIA+ZIIIB) demonstrated several specific complexes that gave weak signals at 6 h and 12 h but strong signals at 24 h, all of which were reduced after application of curcumin. Autostimulation of BZLF1 mRNA induction through binding to the ZIII site at 24 h was confirmed by antibody-induced supershift analysis. The present results confirm our previous finding that curcumin is an effective agent for inhibition of EBV reactivation in Raji DR-CAT cells (carrying DR-dependent chloramphenicol acetyltransferase), and they show for the first time that curcumin inhibits EBV reactivation mainly through inhibition of BZLF1 gene transcription. © 2002 Wiley-Liss, Inc. [source]


EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator

MOLECULAR MICROBIOLOGY, Issue 1 2004
Jean Engohang-Ndong
Summary Ethionamide (ETH) is an important second-line antitubercular drug used for the treatment of patients infected with multidrug-resistant Mycobacterium tuberculosis. Although ETH is a structural analogue of isoniazid, only little cross-resistance to these two drugs is observed among clinical isolates. Both isoniazid and ETH are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. We have recently identified two M. tuberculosis genes, Rv3854c (ethA) and Rv3855 (ethR), involved in resistance to ETH. ethA encodes a protein that belongs to the Flavin-containing monooxygenase family catalysing the activation of ETH. We show here that ethR, which encodes a repressor belonging to the TetR/CamR family of transcriptional regulators, negatively regulates the expression of ethA. By the insertion of the ethA promoter region upstream of the lacZ reporter gene, overexpression of ethR in trans was found to cause a strong inhibition of ethA expression, independently of the presence of ETH in the culture media. Electrophoretic mobility shift assays indicated that EthR interacts directly with the ethA promoter region. This interaction was confirmed by DNA footprinting analysis, which, in addition, identified the EthR-binding region. Unlike other TetR/CamR members, which typically bind 15 bp operators, EthR recognises an unusually long 55 bp region suggesting multimerization of the repressor on its operator. Identification by primer-extension of the ethA transcriptional start site indicated that it is located within the EthR-binding region. Taken together, bacterial two-hybrid experiments and gel filtration assays suggested a dimerization of EthR in the absence of its operator. In contrast, surface plasmon resonance analyses showed that eight EthR molecules bind cooperatively to the 55 bp operator, which represents a novel repression mechanism for a TetR/CamR member. [source]


Mediation of interleukin-1,,induced transforming growth factor ,1 expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: Possible cooperation with activator protein 1

ARTHRITIS & RHEUMATISM, Issue 6 2003
R. Andriamanalijaona
Objective Interleukin-1 (IL-1) and transforming growth factor ,1 (TGF,1) play major roles in osteoarticular diseases, exerting opposite effects on both the catabolism and anabolism of cartilage matrix. Previous findings suggest that IL-1 and TGF,1 could function in a feedback interaction. However, the effect exerted by IL-1 on expression of TGF, by articular chondrocytes is, so far, poorly understood. The present study was carried out to determine the influence of IL-1, on the expression of TGF,1 by bovine articular chondrocytes (BACs) in primary culture. Methods BAC primary cultures were treated with IL-1,, and TGF,1 messenger RNA (mRNA) steady-state levels and protein expression were measured by real-time reverse transcription,polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Transient transfection of TGF,1 gene promoter constructs was performed to delineate the DNA sequences that mediate the IL-1, effect. Electrophoretic mobility shift assays (EMSAs) and supershift analysis were used to characterize the transcription factors binding to these sequences. Results Cultured BACs responded to IL-1, exposure by exhibiting an increase of TGF,1 expression at both the mRNA and protein levels. The effect was found to be mediated by a major 80-bp sequence located between ,732 and ,652 upstream of the transcription initiation site. EMSA and supershift analysis revealed that the transcription factors activator protein 4 (AP-4) and AP-1 specifically bound to the ,720/,696 part of this sequence under IL-1, treatment. Overexpression of AP-4 in the BAC cultures resulted in stimulation of the transcriptional activity of the ,732/+11 TGF,1 promoter construct through the same IL-1,,responsive element. Conclusion IL-1, induces an increase of TGF,1 in articular chondrocytes through activation of AP-4 and AP-1 binding to the TGF,1 gene promoter. These findings may help us understand the role of IL-1, in the disease process. Notwithstanding its deleterious effect on cartilage, IL-1 could initiate the repair response displayed by injured cartilage in the early stages of osteoarthritis through its ability to enhance TGF,1 expression by local chondrocytes. [source]


Caffeic acid phenethyl ester modulates Helicobacter pylori -induced nuclear factor-kappa B and activator protein-1 expression in gastric epithelial cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2005
Mohamed M M Abdel-Latif
Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives (honeybee resin), has anti-inflammatory, anti-carcinogenic and anti-bacterial properties. This study was designed to investigate the anti-inflammatory effects of CAPE on Helicobacter pylori -induced NF- ,B and AP-1 in the gastric epithelial cell line AGS. Electrophoretic mobility shift assay was used to measure NF- ,B- and AP-1-DNA binding activity. Western blotting was used to detect I,B- , and COX-2 expression in AGS cells cocultured with H. pylori. The antiproliferative effect of CAPE was measured by MTT assay. Our results showed that caffeic phenethyl ester inhibits H. pylori -induced NF- ,B and AP-1 DNA-binding activity in a dose (0.1,25 ,g ml,1,0.35,88 ,M) and time- (15,240 min) dependent manner in AGS cells. Maximum inhibition by CAPE was observed at concentrations of 25 ,g ml,1 (,88 ,M) CAPE prevented H. pylori - and cytokine-induced degradation of I,B- , protein. Pretreatment of AGS cells with CAPE also blocked cytokine- and mitogen-induced NF- ,B and AP-1 expression. Furthermore, CAPE suppressed H. pylori -induced cell proliferation and production of the cytokines TNF- , and IL-8. In addition, CAPE blocked H. pylori -induced COX-2 expression. The inhibition of such transcription by CAPE could result in suppression of many genes during H. pylori -induced inflammation, and also provide new insights into the anti-cancer and anti-inflammatory properties of CAPE. British Journal of Pharmacology (2005) 146, 1139,1147. doi:10.1038/sj.bjp.0706421 [source]


Subcellular distribution of S100A4 and its transcriptional regulation under hypoxic conditions in gastric cancer cell line BGC823

CANCER SCIENCE, Issue 5 2010
Ruixiu Zhang
It is well known that S100A4 is overexpressed in many tumors and involved in tumor invasion and metastasis. But the regualtion of it is ill understood. We previously found that hypoxia mimicking cobalt chloride (CoCl2) enhanced the mRNA and protein expressions of the S100A4 gene in the gastric cancer cell line BGC823. In this study we found that S100A4 also displayed increased expression in BGC823 cells after exposure to real hypoxia (2.5% O2) as that by CoCl2 treatment. Moreover, S100A4 protein showed different subcellular distribution under real hypoxia compared with that by CoCl2 treatment or in normoxic conditions. To investigate the underlying molecular mechanism by which hypoxia regulates the expression of S100A4, we analyzed the regulatory sequences of the genes by bioinformatics and found a putative hypoxia responsive element (HRE) motif in the first intron of S1004. Furthermore, luciferase reporter assay showed that it is responsive to hypoxia. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays demonstrated that hypoxia-inducible factor 1 (HIF-1) binds to the functional HRE in vitro and in vivo. The results provide evidence that S100A4 is a hypoxia-inducible gene, whose transcription is stimulated at least partly through the interaction of HIF-1 and HRE located at +329 to +334 of S100A4. (Cancer Sci 2010; 101: 1141,1146) [source]


Transcription factor binding study by capillary zone electrophoretic mobility shift assay

ELECTROPHORESIS, Issue 1-2 2003
Zsolt Ronai
Abstract Regulation of gene expression through interaction of proteins with specific DNA sequences is a central issue in functional genomics. Capillary electrophoretic mobility shift assay is an efficient novel method for the investigation of sequence specific protein-DNA interactions, allowing rapid and sensitive quantification of the complex formation. In this paper, we present a pilot study on capillary zone electrophoretic mobility shift assay (CZEMSA) to investigate the interaction between the transcription factors of HeLa nuclear extract and Sp1-specific fluorescein-labeled oligonucleotide, using the unlabeled probe as competitor. The mobility shift assay was accomplished by CZE in coated capillaries without polymeric buffer additives. Specificity of the DNA protein complex formation was verified by competition experiments, as well as by supershift assay with an anti-Sp1 antibody. The applied electric field strength did not affect the stability of DNA-protein complex during the electrophoretic analysis, allowing rapid identification and quantification of the protein DNA interaction. A practical application to study the interaction between Oryza sativa MADS-box transcription factor 4 (OsMADS4) and its consensus sequence is also reported. [source]


NF,B, cytokines, TLR 3 and 7 expression in human end-stage HCV and alcoholic liver disease

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2010
Peter Stärkel
Eur J Clin Invest 2010; 40 (7): 575,584 Abstract Background/aims, Conflicting observations exist concerning the role of nuclear factor kappa B (NF,B) in alcoholic liver disease (ALD) in animal models. To date no studies have examined this aspect in human liver tissue. We here assessed cytokines and toll-like receptors (TLRs) expressions in conjunction with NF,B activation in non-active end-stage human ALD compared with normal livers and hepatitis C virus (HCV) related end-stage disease. Methods, mRNA and protein expression were examined by quantitative PCR and Western blotting, DNA-binding by electrophoretic mobility shift assays and NF,B sub-cellular localization by immunofluorescent staining of livers. Results, NF,B mRNA and protein expression as well as strong DNA-binding were preserved in ALD but significantly down-regulated in HCV compared with normal livers. P50 immunofluorescence was found in hepatocytes and bile ducts in ALD and normal livers, whereas a shift was observed in p65 staining from non-parenchymal cells in normal livers to hepatocytes in ALD. NF,B responsive genes mRNA levels IkB, and interleukin 6 were significantly higher in ALD compared with HCV. Tumour necrosis factor alpha (TNF,), TLRs 3 and 7 mRNA were up-regulated in ALD and HCV compared with normal liver with TNF, and TLR7 being the highest in HCV. Strong induction of interferon beta was found in HCV but not in ALD or normal liver tissue. Conclusions, Persistent NF,B activation together with high pro-inflammatory cytokine expression and upregulation of TLR3 and TLR7 is associated with end-stage ALD in humans and could contribute to disease progression even in absence of alcohol intake. [source]


Intracellular HMGB1 transactivates the human IL1B gene promoter through association with an Ets transcription factor PU.1

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2008
Fumihiko Mouri
Abstract High mobility group box 1 protein (HMGB1), originally described as a non-histone, DNA binding protein, was recently identified as a late mediator of inflammation via its extracellular release from activated macrophages/monocytes. In the present study, we report that intracellular HMGB1 synergizes with a macrophage/monocyte-specific E26 transformation-specific sequence (Ets) transcription factor PU.1 to transactivate the promoter of the IL1B gene coding a 31-kDa proIL-1, protein. The ,131 to +12 IL1B promoter, which possesses a PU.1 binding motif essential for its transactivation, was induced when HMGB1 expression vector was transfected into murine RAW264.7 macrophage cells. Our glutathione S -transferase-pulldown and coimmunoprecipitation assays demonstrated direct physical interaction of HMGB1 with PU.1. Deletion of the PU.1 winged helix-turn-helix DNA-binding domain inhibited the association of the two proteins. In electrophoretic mobility shift assay using recombinant PU.1 protein, a ternary complex of PU.1, HMGB1 and PU.1-binding element within the IL1B promoter was generated. The importance of PU.1 was further supported by our observation that induction of the IL1B promoter was obtained only after PU.1 expression in PU.1-deficient murine EL4 thymoma cells. Thus, our data raise the possibility of a novel mechanism which sustains and amplifies inflammatory reactions through physical interaction of PU.1 with intracellular HMGB1 in macrophages/monocytes. [source]


Direct role of NF-,B activation in Toll-like receptor-triggered HLA-DRA expression

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2006
Keun-Wook Lee
Abstract Microbial components, such as DNA containing immunostimulatory CpG motifs (CpG-DNA) and lipopolysaccharides (LPS), elicit the cell surface expression of MHC class II (MHC-II) through Toll-like receptor (TLR)/IL-1R. Here, we show that CpG-DNA and LPS induce expression of the HLA-DRA in the human B cell line, RPMI 8226. Ectopic expression of the dominant negative mutant of CIITA and RNA interference targeting the CIITA gene indicate that CIITA activation is not enough for the maximal MHC-II expression induced by CpG-DNA and LPS. Additionally, nuclear factor (NF)-,B activation is required for the CpG-DNA-activated and LPS-activated HLA-DRA expression, whereas IFN-,-induced MHC-II expression depends on CIITA rather than on NF-,B. Comprehensive mutant analyses, electrophoretic mobility shift assays and chromatin immunoprecipitation assays, reveal that the functional interaction of NF-,B with the promoter element is necessary for the TLR-mediated HLA-DRA induction by CpG-DNA and LPS. This novel mechanism provides the regulation of MHC-II gene expression with complexity and functional diversity. [source]


Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005
Bergen, Jeroen van
Abstract Killer Ig-like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR-mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1,99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter-reporter assays revealed significant structural and functional differences in the cis-acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene-specific and stochastic mechanisms. [source]


Characterization of the proximal enhancer element and transcriptional regulatory factors for murine recombination activating gene-2

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2005
Xing-Cheng Wei
Abstract Recombination-activating gene (RAG) -1 and RAG-2 are essential for V(D)J recombination and are expressed specifically in lymphoid cells. We previously identified two putative enhancer elements, the proximal and distal enhancers, located at ,2.6 and ,8,kb, respectively, 5,,upstream of mouse RAG-2, and characterized the distal enhancer element in detail. In this study, to characterize the proximal enhancer in vitro as well as in vivo, we first defined a 170-bp core enhancer element within the proximal enhancer,(Ep) and determined its activity in various cells. Ep conferred enhancer activity only in B-lymphoid cell lines, but not in T- or non-lymphoid cell lines. Analysis of the transgenic mice carrying an EGFP reporter gene linked with Ep revealed that Ep activated the transcription of the reporter gene in bone marrow and spleen, but not in thymus or non-lymphoid tissues. Ep was active in both B220+IgM, and B220+IgM+ subpopulations in the bone marrow and in the B220+ subpopulation in the spleen. Using electrophoretic mobility shift assays and mutational assays, we found that Ikaros and CCAAT/enhancer binding protein cooperatively bind Ep and function as the transcription factors responsible for B,cell-specific enhancer activity. These results demonstrate the role of Ep as a cis- regulatory enhancer element for RAG-2- specific expression in B-lymphoid lineages. [source]


Functional association of human Ki-1/57 with pre-mRNA splicing events

FEBS JOURNAL, Issue 14 2009
Gustavo C. Bressan
The cytoplasmic and nuclear protein Ki-1/57 was first identified in malignant cells from Hodgkin's lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki-1/57 in human cells remains to be determined. Here, we investigated the relationship of Ki-1/57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki-1/57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki-1/57 was able to bind to a poly-U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki-1/57 can modify the splicing site selection of the adenoviral E1A minigene in a dose-dependent manner. Further confocal and fluorescence microscopy analysis revealed the localization of enhanced green fluorescent protein,Ki-1/57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N-terminal region. In summary, our findings suggest that Ki-1/57 is probably involved in cellular events related to RNA functions, such as pre-mRNA splicing. Structured digital abstract ,,MINT-7041074: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SF2P32 (uniprotkb:Q07021) by two hybrid (MI:0018) ,,MINT-7041232: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by pull down (MI:0096) ,,MINT-7041203: P80-Coilin (uniprotkb:P38432) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041217: SMN (uniprotkb:Q16637) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041189: SC-35 (uniprotkb:Q01130) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041169: NPM (uniprotkb:P06748) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041249: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:O60506) by pull down (MI:0096) ,,MINT-7041065: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by two hybrid (MI:0018) ,,MINT-7041069: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with YB1 (uniprotkb:P67809) by two hybrid (MI:0018) ,,MINT-7041079: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with HNRPQ (uniprotkb:O60506) by two hybrid (MI:0018) ,,MINT-7041087: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0218) with HNRPQ3 (uniprotkb:O60506-1), HNRPQ2 (uniprotkb:O60506-2) and HNRPQ-1 (uniprotkb:O60506-3) by anti bait coimmunoprecipitation (MI:0006) [source]


Sp1 and Sp3 are involved in up-regulation of human deoxyribonuclease II transcription during differentiation of HL-60 cells

FEBS JOURNAL, Issue 8 2003
San-Fang Chou
Expression of DNase II in macrophages is potentially crucially important in the removal of unwanted DNA. We have previously shown that DNase II expression is up-regulated at the transcriptional level during the phorbol 12-myristate-13-acetate (PMA)-induced differentiation of HL-60 and THP-1 cells. In this study, we investigated the cis -regulatory elements and transcription factors involved in this process in HL-60 cells. cis -Regulatory elements in the DNase II promoter were located by 5, deletion and site-directed mutagenesis of promoter-luciferase constructs and transient transfection of HL-60 cells. Furthermore, the binding proteins were identified by electrophoretic mobility shift assay (EMSA) in the presence of specific antibodies. In the DNase II promoter, 249 base pairs upstream of the transcription start site were essential for maximal promoter activity in both untreated and PMA-treated HL-60 cells and, within this region, three Sp1 and Sp3 binding sites were identified as essential for transcriptional regulation and PMA induction. Western blot analysis showed that PMA treatment resulted in increased levels of Sp1 and Sp3 proteins. Furthermore, cotransfection analysis in Drosophila SL2 cells showed that Sp1 was more potent than Sp3 in activating the DNase II promoter. We therefore conclude that Sp1 and/or Sp3 are involved in the up-regulation of DNase II expression during the differentiation of HL-60 cells. [source]


Chromatin structure of the bovine Cyp19 promoter 1.1

FEBS JOURNAL, Issue 5 2001
DNA hypomethylation correlate with placental expression, DNaseI hypersensitive sites
Expression of the Cyp19 gene, encoding aromatase cytochrome P450, is driven by several tissue-specific promoters. The underlying mechanisms of this complex regulation have not yet been elucidated in detail. In the present report we investigate a possible link between chromatin structure and tissue-specific regulation of the bovine Cyp19 gene. We analysed the DNA methylation status and mapped DNaseI hypersensitive sites in the region encompassing the Cyp19 promoter 1.1 (P1.1) which controls Cyp19 expression in the bovine placenta. We show that P1.1 is hypomethylated in placental cotyledons (foetal layer) whereas it is methylated in placental caruncles (maternal layer), testis and corpus luteum. Furthermore, two placenta-specific DNaseI hypersensitive sites, HS1 and HS2, were observed within P1.1. Both DNA hypomethylation and the presence of DNaseI hypersensitive sites correlate with transcriptional activity of P1.1. Sequence analysis of hypersensitive sites revealed potential cis -regulatory elements, an E-box in HS1 and a trophoblast-specific element-like sequence in HS2. It could be demonstrated by electrophoretic mobility shift assays that both sequence motifs are specific targets for placenta-derived nuclear factors. In conclusion, observed tissue-specific differences of the chromatin structure which correlate with tissue-specific promoter activity suggest that chromatin might be an important regulator of aromatase expression in cattle. [source]


Essential role of C/EBP, in G-CSF-induced transcriptional activation and chromatin modification of myeloid-specific genes

GENES TO CELLS, Issue 4 2008
Satoshi Iida
Granulocyte colony-stimulating factor (G-CSF) regulates the proliferation and differentiation of neutrophilic progenitor cells. Here, we investigated the roles of CCAAT/enhancer-binding protein (C/EBP), in the G-CSF-induced transcriptional activation and chromatin modification of the CCR2 and myeloperoxidase (MPO) genes in IL-3-dependent myeloid FDN1.1 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays revealed that G-CSF activates C/EBP, to bind target promoters. ChIP mapping experiments across the CCR2 and MPO genes showed that G-CSF induces histone H3 modifications: the acetylation of Lys9, trimethylation of Lys4 and trimethylation of Lys9. The distribution profile of the trimethylated Lys9 was distinct from that of the two other modifications. All the G-CSF-induced C/EBP, recruitment, transcriptional activation and histone modifications were reversed by re-stimulation with IL-3, and were abolished by short hairpin RNA (shRNA)-mediated knockdown of C/EBP,. These results indicate that C/EBP, is activated by G-CSF to bind target promoters, and plays critical roles in the transcriptional activation and dynamic chromatin modification of target genes during neutrophil differentiation. [source]


Interleukin 18 causes hepatic ischemia/reperfusion injury by suppressing anti-inflammatory cytokine expression in mice

HEPATOLOGY, Issue 3 2004
Dan Takeuchi
Hepatic ischemia/reperfusion injury is a clinically important problem. While the mechanisms of the initial event and subsequent neutrophil-dependent injury are somewhat understood, little is known about the regulation of endogenous hepatoprotective effects on this injury. Interleukin 12 (IL-12) plays a role in the induction of this injury, but involvement of interleukin 18 (IL-18) has not been clarified. Using a murine model of partial hepatic ischemia and subsequent reperfusion, the aim of the current study was to determine whether IL-18 is up-regulated during hepatic ischemia/reperfusion and to determine the role of endogenous IL-18 in the development and regulation of inflammatory hepatic ischemia/reperfusion injury. Hepatic IL-18 expression was up-regulated from 1 to 8 hours after reperfusion. Hepatic ischemia/reperfusion induced nuclear factor-,B (NF-,B) and activator protein 1 (AP-1) activation, as defined by electrophoretic mobility shift assay, and caused significant increases in liver neutrophil recruitment, apoptosis, hepatocellular injury, and liver edema as defined by liver myeloperoxidase content, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling (TUNEL) staining, serum aminotransferase levels, and liver wet-to-dry weight ratios. In mice treated with neutralizing antibody to IL-18, ischemia/reperfusion-induced increases in CXC chemokine expression, activation of NF-,B and AP-1, and apoptosis were greatly reduced. Furthermore, under blockade of IL-18, anti-inflammatory cytokines such as IL-4 and IL-10 were greatly up-regulated. Signal transducer and activator of transcription 6 (STAT6) was significantly activated under blockade of IL-18. These conditions also caused significant reduction in liver neutrophil sequestration and liver injury. In conclusion, the data suggest that IL-18 is required for facilitating neutrophil-dependent hepatic ischemia/reperfusion injury through suppressing anti-inflammatory cytokine expression. (HEPATOLOGY 2004;39:699,710.) [source]