Home About us Contact | |||
Electrophoretic Deposition (electrophoretic + deposition)
Selected AbstractsMulti-walled Carbon Nanotube-Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD),ADVANCED ENGINEERING MATERIALS, Issue 1-2 2008C. Kaya Sol-gel synthesised nano-size hydroxyapatite (HA) powders were dispersed in water-based suspensions with the addition of multi-walled carbon nanotubes. Ti6Al4V medical alloys were coated with monolithic and carbon nanotube-reinforced HA using electrophoretic deposition (EPD) in an attempt to control deposit structure and thickness. It was shown that the sintering temperature of the deposited HA layers was significantly lowered by the use of sinter active nano-powders. Moreover the addition of carbon nanotubes increased the bonding strength of the EPD-formed layers to the metallic substrate. The cost-effective EPD technique used in the present work has high industrial potential for coating metallic medical implants with composite bioactive layers. [source] Textured Microstructure and Dielectric Properties Relationship of BaNd2Ti5O14 Thick Films Prepared by Electrophoretic DepositionADVANCED FUNCTIONAL MATERIALS, Issue 7 2009Zhi Fu Abstract An alternative approach to tailor the temperature coefficient of permittivity (TC,r) of high Q dielectric BaO,Re2O3,TiO2 (Re: rare earth elements) thick films is presented. 10- to 80-µm-thick BaNd2Ti5O14 (BNT) films are fabricated by electrophoretic deposition on Pt foils under different processing conditions. Observed anisotropic grain growth is facilitated by constrained sintering. The increase of the sintering temperature increases markedly the aspect ratio of the grains, decreases the dielectric permittivity and TC,r changes from ,114 to +12,ppm °C,1. By controlling the sintering temperature, near-zero TC,r, high Q thick films can be fabricated with 45,<,,r,<,70. These findings are of technological relevance since they demonstrate that control of substrate constraint and sintering conditions can be used to control grain anisotropy and thus microwave properties of the BaO,Re2O3,TiO2. The thick films facilitate scaling to small device sizes for high frequency operation. Similar observations are expected in other microwave systems thus opening further technological opportunities. [source] Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic DepositionADVANCED MATERIALS, Issue 17 2009Zhong-Shuai Wu Homogeneous single-layer graphene films are fabricated using an electrophoretic deposition technique, and their field-emission properties are investigated. The graphene films show high density, uniform thickness, numerous edges normal to the film surface, and good interface contact and adhesion with the substrate, and consequently show excellent field-emission properties. [source] Preparation of Crystalline-Oriented Titania Photoelectrodes on ITO Glasses from a 2-Propanol,2,4-Pentanedione Solvent by Electrophoretic Deposition in a Strong Magnetic FieldJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2009Mamiko Kawakita Crystal-oriented and crack-free thin TiO2 films with a good interfacial adhesion on indium,tin oxide glass substrates for photoelectrodes of dye-sensitized solar cells were fabricated by the constant voltage electrophoretic deposition (EPD) method in a strong magnetic field of 12 T generated by a superconducting magnet. A binder-free suspension for the EPD was prepared by dispersing TiO2 in a mixture of 2-propanol and 2,4-pentanedione (acetylacetone). The electrical conductivity, sedimentation rate, and the electrophoretic mobility were measured at varying ratios of the mixed solution. The optimized state of the suspension exhibiting the highest surface charge potential and producing deposits with the highest green density was obtained at the 50:50 mixing ratio. The TiO2 films were characterized by X-ray diffraction and scanning electron microscopic analyses. [source] Electrophoretic Deposition of YSZ Particles on Non-Conducting Porous NiO,YSZ Substrates for Solid Oxide Fuel Cell ApplicationsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2006Laxmidhar Besra This paper reports a method of performing electrophoretic deposition (EPD) on non-conducting substrates overcoming the requirement of a conducting substrate through the use of porous substrates. The conductivity of the substrate is therefore no longer a limiting factor in the application of EPD. This method is applicable to the fabrication of thick or thin layers of ceramic or metal for various applications. As an example, thin and dense yttria-stabilized zirconia (YSZ) layers have been deposited on a non-conducting NiO,YSZ substrate by EPD from a non-aqueous suspension. A solid oxide fuel cell constructed on these sintered bilayers exhibited power densities of 384 and 611 mW/cm2 at 750° and 850°C, respectively. [source] Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding TechniqueJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2006Hideyuki Negishi Preparation of tubular silicalite membranes by hydrothermal synthesis with electrophoretic deposition (EPD) as a seeding technique was investigated. Two micrometers of small silicalite seeds were produced by an open-system hydrothermal synthesis at 100°C. These seeds were dispersed in 1-propanol and seeded on porous tubular stainless-steel supports by EPD; it had a high productivity and uniformity. The seeded support was then hydrothermally treated, and a tubular silicalite membrane was obtained. The pervaporation performance of this membrane showed a separation factor , of 70 with a total flux of 0.35 kg·(m2·h),1 for a 5 vol% EtOH aqueous solution at 30°C. [source] Preparation of a Monodispersed Suspension of Barium Titanate Nanoparticles and Electrophoretic Deposition of Thin FilmsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2004Juan Li A transparent and stable monodispersed suspension of nanocrystalline barium titanate was prepared by dispersing a piece of BaTiO3 gel into a mixed solvent of 2-methoxyethanol and acethylacetone. The results of high-resolution transmission electron microscopy (HR-TEM) and size analyzer confirmed that the BaTiO3 nanoparticles in the suspension had an average size of ,10 nm with a narrow size distribution. Crystal structure characterization via TEM and X-ray diffraction indicated BaTiO3 nanocrystallites to be a perovskite cubic phase. BaTiO3 thin films of controlled thickness from 100 nm to several micrometers were electrophoretic deposited compactly on Pt/Ti/SiO2/Si substrates. The deposited thin film had uniform nanostructure with a very smooth surface. [source] Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide CoatingsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2004Yuan-Chung Wang An integrated process combining the preparation of ZnO nanoparticles and the formation of ZnO coatings using electrophoretic deposition (EPD) is reported. The work focuses on the deposition kinetics of nanocrystalline ZnO coatings on copper electrodes during EPD by direct measurement of the thickness of the deposited layer. The experimental results show that the EPD process is a powerful route to fabricate uniform coatings with desired thickness and excellent surface smoothness, which might be attributed to small particle size and narrow size distribution. On the other hand, the deposition kinetics changes with applied voltage and deposition time. The deposition thickness increases with increasing applied voltage and deposition time. In a short deposition time, the deviation of deposition rate between the theoretical and experimental values is caused by voltage drops during deposition, and the discrepancy increases with the applied voltage. Moreover, the increasing voltage drop and depletion of the suspension lead to decreasing current and lower deposition rate after longer deposition time. The critical transition time of deposition kinetics is found to exponentially decrease with increasing applied voltage. [source] Design and Fracture of Layered Al2O3/TZ3Y Composites Produced by Electrophoretic DepositionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2001Benjamin Hatton Alumina/yttria-stablized tetragonal zirconia (Al2O3/TZ3Y) multilayer composites with strong interfaces and containing residual stresses were produced by electrophoretic deposition. As-synthesized and Vickers-indented samples with different layering designs have been tested in bending (up to 1300°C) to experimentally define conditions for crack deflection and flaw tolerance. The compressive residual stress in the Al2O3 layers (,r) is a function of layer thickness (t). It was found that the parameter ,r2t is an effective indicator of the fracture behavior, as predicted by strain energy release calculations. With decreasing ,r2t, the fracture followed a sequence from spontaneous delamination, multistage fracture with extensive crack deflection, to catastrophic failure with, and finally without, deflection steps. Decrease of ,r with increasing test temperature causes changes in fracture behavior which correspond to the room-temperature transitions of ,r2t. [source] Transparent Polycrystalline Alumina Ceramic with Sub-Micrometre Microstructure by Means of Electrophoretic DepositionMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 4 2006A. Braun Abstract The optical quality attainable in coarse-grained polycrystalline alumina is severely limited by grain-boundary scattering, which is inherent to non-cubic materials. The optical properties of sub-micrometre polycrystalline alumina are of growing interest triggered by the fact that a decrease in the grain sizes of the final sintered material yields an improvement in the optical quality while the scattering mechanism changes as the grain size becomes comparable with the wavelength of light. To achieve transparent alumina ceramics with a fine-grained microstructure, however, porosity and other defects must be avoided. This necessitates the optimization of processing and sintering procedures. Electrophoretic deposition (EPD) is a colloidal process in which ceramic bodies are directly shaped from a stable suspension by application of an electric field. Electrophoretic deposition enables the formation of homogeneous, uniform green microstructures with high density, which can be sintered to transparency. It is a simple and precise technique to synthesize not only monoliths, but also composites with complex geometries [1]. Alumina green bodies were deposited from stabilized aqueous suspensions with and without doping. Green alumina compacts were evaluated based on their pore size distribution and density. Densification behaviour was characterized by dilatometric studies conducted at constant heating rate. Samples were sintered at different temperatures with subsequent post-densification by hot isostatic pressing. Transparency was evaluated by means of spectroscopic measurements. The measured in-line transmission of the samples at 645 nm was more than 50,% and that is 58,% of the value of sapphire. The influence of dopings on transparency was investigated. The mechanical properties of the samples were tested. [source] Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD),ADVANCED ENGINEERING MATERIALS, Issue 1-2 2008C. Kaya Sol-gel synthesised nano-size hydroxyapatite (HA) powders were dispersed in water-based suspensions with the addition of multi-walled carbon nanotubes. Ti6Al4V medical alloys were coated with monolithic and carbon nanotube-reinforced HA using electrophoretic deposition (EPD) in an attempt to control deposit structure and thickness. It was shown that the sintering temperature of the deposited HA layers was significantly lowered by the use of sinter active nano-powders. Moreover the addition of carbon nanotubes increased the bonding strength of the EPD-formed layers to the metallic substrate. The cost-effective EPD technique used in the present work has high industrial potential for coating metallic medical implants with composite bioactive layers. [source] Conformal Nano-Sized Inorganic Coatings on Mesoporous TiO2 Films for Low-Temperature Dye-Sensitized Solar Cell FabricationADVANCED FUNCTIONAL MATERIALS, Issue 2 2010Larissa Grinis Abstract Here, a new method based on sol,gel electrophoretic deposition to produce uniform high-quality inorganic conformal coatings on mesoporous nano-particulate films is presented. This novel sol preparation method allows for very fine control of the coating properties, thus inducing new adjustable functionalities to these electrodes. It is shown that the deposition of an amorphous TiO2 and/or MgO shell onto photoanodes used in dye-sensitized solar cells (DSSCs) improves their light-to-electric-power conversion efficiency without the need for sintering. It is proposed that the amorphous TiO2 coating improves the electronic inter-particle connection and passivates the surface states. The insulating MgO coating further reduces the electron transfer from the conduction band into the electrolyte while the electron injection from the excited dye state remains unperturbed for thin coatings. Using a low-temperature method for DSSC production on plastic substrates, a maximum efficiency of 6.2% applying pressure together with an optimized TiO2 coating is achieved. For systems that cannot be pressed a conversion efficiency of 5.1% is achieved using a double shell TiO2/MgO coating. [source] Textured Microstructure and Dielectric Properties Relationship of BaNd2Ti5O14 Thick Films Prepared by Electrophoretic DepositionADVANCED FUNCTIONAL MATERIALS, Issue 7 2009Zhi Fu Abstract An alternative approach to tailor the temperature coefficient of permittivity (TC,r) of high Q dielectric BaO,Re2O3,TiO2 (Re: rare earth elements) thick films is presented. 10- to 80-µm-thick BaNd2Ti5O14 (BNT) films are fabricated by electrophoretic deposition on Pt foils under different processing conditions. Observed anisotropic grain growth is facilitated by constrained sintering. The increase of the sintering temperature increases markedly the aspect ratio of the grains, decreases the dielectric permittivity and TC,r changes from ,114 to +12,ppm °C,1. By controlling the sintering temperature, near-zero TC,r, high Q thick films can be fabricated with 45,<,,r,<,70. These findings are of technological relevance since they demonstrate that control of substrate constraint and sintering conditions can be used to control grain anisotropy and thus microwave properties of the BaO,Re2O3,TiO2. The thick films facilitate scaling to small device sizes for high frequency operation. Similar observations are expected in other microwave systems thus opening further technological opportunities. [source] Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering ScaffoldsADVANCED FUNCTIONAL MATERIALS, Issue 15 2007R. Boccaccini Abstract The coating of highly porous Bioglass® based 3D scaffolds with multi-walled carbon nanotubes (CNT) was investigated. Foam like Bioglass® scaffolds were fabricated by the replica technique and electrophoretic deposition was used to deposit homogeneous layers of CNT throughout the scaffold pore structure. The optimal experimental conditions were determined to be: applied voltage 15,V and deposition time 20 minutes, utilizing a concentrated aqueous suspension of CNT with addition of a surfactant and iodine. The scaffold pore structure remained invariant after the CNT coating, as assessed by SEM. The incorporation of CNTs induced a nanostructured internal surface of the pores which is thought to be beneficial for osteoblast cell attachment and proliferation. Bioactivity of the scaffolds was assessed by immersion studies in simulated body fluid (SBF) for periods of up to 2 weeks and the subsequent determination of hydroxyapatite (HA) formation. The presence of CNTs can enhance the bioactive behaviour of the scaffolds since CNTs can serve as template for the ordered formation of a nanostructured HA layers, which does not occur on uncoated Bioglass® surfaces. [source] The Electrophoretic Deposition of Lanthanum Manganite Powders for a Cathode-Supported Solid Oxide Fuel Cell in Planar and Tubular ConfigurationsINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 6 2008Ivana Krklju The purpose of this research was to obtain porous, high-quality cathodes for solid oxide fuel cells in both planar and tubular shapes. To accomplish this, cathodic electrophoretic deposition of the LaMnO3 powder (synthesized by the modified sol,gel method proposed by Pechini) was performed. The optimal sintering temperatures were 1200°C and 1300°C for the tubular and planar configurations, respectively. Single-phase deposits with about 40% porosity were obtained in both configurations. The cathode quality was confirmed by depositing an electrolyte layer of YSZ. After the cosintering of both layers, an extremely dense electrolyte layer was obtained, and the cathode layer retained its high porosity. [source] Anode-Supported Tubular Micro-Solid Oxide Fuel CellINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2007Partho Sarkar A tubular anode-supported "micro-solid oxide fuel cell" (,SOFC) has been developed for producing high volumetric power density (VPD) SOFC systems featuring rapid turn on/off capability. An electrophoretic deposition (EPD)-based, facile manufacturing process is being refined to produce the anode support, anode functional and electrolyte layers of a single cell. ,SOFCs (diameter <5 mm) have two main potential advantages, a substantial increase in the electrolyte surface area per unit volume of a stack and also rapid start-up. As fuel cell power is directly proportional to the active electrolyte surface area, a ,SOFC stack can substantially increase the VPD of an SOFC device. A decrease in tube diameter allows for a reduction in wall thickness without any degradation of a cell's mechanical properties. Owing to its thin wall, a ,SOFC has an extremely high thermal shock resistance and low thermal mass. These two characteristics are fundamental in reducing start-up and turn-off time for the SOFC stack. Traditionally, SOFC has not been considered for portable applications due to its high thermal mass and low thermal shock resistance (start-up time in hours), but with ,SOFCs' potential for rapid start-up, new possibilities for portable and transportable applications open up. [source] Preparation of Crystalline-Oriented Titania Photoelectrodes on ITO Glasses from a 2-Propanol,2,4-Pentanedione Solvent by Electrophoretic Deposition in a Strong Magnetic FieldJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2009Mamiko Kawakita Crystal-oriented and crack-free thin TiO2 films with a good interfacial adhesion on indium,tin oxide glass substrates for photoelectrodes of dye-sensitized solar cells were fabricated by the constant voltage electrophoretic deposition (EPD) method in a strong magnetic field of 12 T generated by a superconducting magnet. A binder-free suspension for the EPD was prepared by dispersing TiO2 in a mixture of 2-propanol and 2,4-pentanedione (acetylacetone). The electrical conductivity, sedimentation rate, and the electrophoretic mobility were measured at varying ratios of the mixed solution. The optimized state of the suspension exhibiting the highest surface charge potential and producing deposits with the highest green density was obtained at the 50:50 mixing ratio. The TiO2 films were characterized by X-ray diffraction and scanning electron microscopic analyses. [source] Dielectric Properties of Electrophoretically Deposited and Isothermally Pressed BaTiO3 Thick FilmsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2008Ling Zhang Thick BaTiO3 films were prepared on platinum metallic foils by the electrophoretic deposition (EPD) technique using BaTiO3 nanoparticles. In order to increase the density of the thick film, the green film was pressed under an isostatic pressure of 200 MPa before high-temperature sintering. The microstructures of deposited films were examined using X-ray diffraction and scanning electron microscopy techniques. Dielectric properties of the thick films were investigated. As the films grow thicker, the dielectric constant increases gradually and the dielectric loss decreases slightly. The experimental results indicate that isostatic pressing is an effective method to process thick films with dense microstructure and better dielectric properties. [source] Conductive Polymer Coating on Nonconductive Ceramic Substrates for Use in the Electrophoretic Deposition ProcessJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2008Tetsuo Uchikoshi Uniform coating and line patterning of a conductive polypyrrole (Ppy) film on nonconductive ceramic materials were performed for use as substrates in the electrophoretic deposition (EPD) process. The Ppy was synthesized by chemical oxidation in the pyrrole solution. Direct shaping or line patterning of alumina or zirconia particles by EPD was carried out using the Ppy films as cathodes. [source] Electrophoretic Deposition of YSZ Particles on Non-Conducting Porous NiO,YSZ Substrates for Solid Oxide Fuel Cell ApplicationsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2006Laxmidhar Besra This paper reports a method of performing electrophoretic deposition (EPD) on non-conducting substrates overcoming the requirement of a conducting substrate through the use of porous substrates. The conductivity of the substrate is therefore no longer a limiting factor in the application of EPD. This method is applicable to the fabrication of thick or thin layers of ceramic or metal for various applications. As an example, thin and dense yttria-stabilized zirconia (YSZ) layers have been deposited on a non-conducting NiO,YSZ substrate by EPD from a non-aqueous suspension. A solid oxide fuel cell constructed on these sintered bilayers exhibited power densities of 384 and 611 mW/cm2 at 750° and 850°C, respectively. [source] Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding TechniqueJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2006Hideyuki Negishi Preparation of tubular silicalite membranes by hydrothermal synthesis with electrophoretic deposition (EPD) as a seeding technique was investigated. Two micrometers of small silicalite seeds were produced by an open-system hydrothermal synthesis at 100°C. These seeds were dispersed in 1-propanol and seeded on porous tubular stainless-steel supports by EPD; it had a high productivity and uniformity. The seeded support was then hydrothermally treated, and a tubular silicalite membrane was obtained. The pervaporation performance of this membrane showed a separation factor , of 70 with a total flux of 0.35 kg·(m2·h),1 for a 5 vol% EtOH aqueous solution at 30°C. [source] Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide CoatingsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2004Yuan-Chung Wang An integrated process combining the preparation of ZnO nanoparticles and the formation of ZnO coatings using electrophoretic deposition (EPD) is reported. The work focuses on the deposition kinetics of nanocrystalline ZnO coatings on copper electrodes during EPD by direct measurement of the thickness of the deposited layer. The experimental results show that the EPD process is a powerful route to fabricate uniform coatings with desired thickness and excellent surface smoothness, which might be attributed to small particle size and narrow size distribution. On the other hand, the deposition kinetics changes with applied voltage and deposition time. The deposition thickness increases with increasing applied voltage and deposition time. In a short deposition time, the deviation of deposition rate between the theoretical and experimental values is caused by voltage drops during deposition, and the discrepancy increases with the applied voltage. Moreover, the increasing voltage drop and depletion of the suspension lead to decreasing current and lower deposition rate after longer deposition time. The critical transition time of deposition kinetics is found to exponentially decrease with increasing applied voltage. [source] Design and Fracture of Layered Al2O3/TZ3Y Composites Produced by Electrophoretic DepositionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2001Benjamin Hatton Alumina/yttria-stablized tetragonal zirconia (Al2O3/TZ3Y) multilayer composites with strong interfaces and containing residual stresses were produced by electrophoretic deposition. As-synthesized and Vickers-indented samples with different layering designs have been tested in bending (up to 1300°C) to experimentally define conditions for crack deflection and flaw tolerance. The compressive residual stress in the Al2O3 layers (,r) is a function of layer thickness (t). It was found that the parameter ,r2t is an effective indicator of the fracture behavior, as predicted by strain energy release calculations. With decreasing ,r2t, the fracture followed a sequence from spontaneous delamination, multistage fracture with extensive crack deflection, to catastrophic failure with, and finally without, deflection steps. Decrease of ,r with increasing test temperature causes changes in fracture behavior which correspond to the room-temperature transitions of ,r2t. [source] |