Electroosmotic Flow (electroosmotic + flow)

Distribution by Scientific Domains


Selected Abstracts


Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow

PLASMA PROCESSES AND POLYMERS, Issue 4 2007
Ina T. Martin
Abstract Polydimethylsiloxane (PDMS) capillary electrophoresis microchips were modified using plasma-enhanced chemical vapor deposition (PECVD), resulting in modified electroosmotic flow (EOF) values. Octafluoropropane (C3F8) and acrylic acid (AA) plasmas were chosen as initial test systems for device modification. Argon plasma pretreatments were used to improve adhesion of the fluorocarbon (FC) and AA films. Contact angle measurements and X-ray photoelectron spectroscopy data demonstrated that the Ar/C3F8 plasma treatment of PDMS results in the deposition of a hydrophobic, crosslinked FC film, whereas the Ar/AA plasma treatment results in the deposition of a hydrophilic film with ionizable acid groups. The extent of plasma modification within the device channels was explored using scanning Auger microscopy and dye absorption measurements. EOF values were measured for plasma-treated chips as a function of pH, and aging studies were performed to determine the durability of the plasma treatments. Results show that EOF is decreased in Ar/C3F8 plasma-treated chips, and varies less with pH than untreated devices. Additionally, EOF measurements are constant for a minimum of 5 d. In contrast, EOF for Ar/AA plasma-treated devices is dependent on pH. EOF measurements of C3F8 and AA treated chips without the Ar pretreatment are less stable, particularly in the AA case. In addition to improving adhesion, the Ar plasma treatment results in a decreased hydrophobic dye absorption into the PDMS, which is attributed to the physical crosslinking of the polymer by the Ar plasma. [source]


Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials

ELECTROPHORESIS, Issue 5 2010
Cunlu Zhao
Abstract Electroosmotic flow of Power-law fluids over a surface with arbitrary zeta potentials is analyzed. The governing equations including the nonlinear Poisson,Boltzmann equation, the Cauchy momentum equation and the continuity equation are solved to seek exact solutions for the electroosmotic velocity, shear stress, and dynamic viscosity distributions inside the electric double layer. Specifically, an expression for the general Smoluchowski velocity is obtained for electroosmosis of Power-law fluids in a fashion similar to the classic Smoluchowski velocity for Newtonian fluids. The existing Smoluchowski slip velocities under two special cases, (i) for Newtonian fluids with arbitrary zeta potentials and (ii) for Power-law fluids with small zeta potentials, can be recovered from our derived formula. It is interesting to note that the general Smoluchowski velocity for non-Newtonian Power-law fluids is a nonlinear function of the electric field strength and surface zeta potentials; this is due to the coupling electrostatics and non-Newtonian fluid behavior, which is different from its counterpart for Newtonian fluids. This general Smoluchowski velocity is of practical significance in determining the flow rates in microfluidic devices involving non-Newtonian Power-law fluids. [source]


Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent

ELECTROPHORESIS, Issue 7-8 2004
Aaron R. Wheeler
Abstract Poly(dimethylsiloxane) (PDMS) microfluidic devices were prepared from different ratios of "curing agent" (which contains silicon hydride groups) to "base" (which contains vinyl-terminated noncross-linked PDMS), to determine the effect of this ratio on electroosmotic flow (EOF). In fabricating devices for this purpose, a novel method for permanently enclosing PDMS channels was developed. As a supplement to the microfluidic method, the inner walls of capillaries were coated with PDMS formed from varying ratios of curing agent to base. EOF was found to be constant for PDMS formed with each ratio, which implies that the negative surface charges do not arise from chemical species present only in the base or the curing agent. [source]


Cover Picture: Electrophoresis 5'2010

ELECTROPHORESIS, Issue 5 2010
Article first published online: 26 FEB 2010
Issue no. 5 is a Special issue on "Fundamentals of Electrophoresis". Part I has 5 review articles on the various fields of electrophoresis. Separation in nano-channels is treated in 3 articles in Part II. Part III has 3 research papers on computer simulation of electromigration and Part IV also has 3 articles on stacking and focusing. Interaction in electrophoretic systems is the subject of Part V which has 6 research papers. Finally, electroosmotic flow is described in 1 paper in part VI. [source]


Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel

ELECTROPHORESIS, Issue 5 2010
Yasaman Daghighi
Abstract A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated. [source]


An accessible micro-capillary electrophoresis device using surface-tension-driven flow

ELECTROPHORESIS, Issue 9 2009
Swomitra K. Mohanty
Abstract We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) [G. M. Walker et al., Lab. Chip. 2002, 2, 131,134] injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom) [A. K. Agarwal et al., J. Micromech. Microeng. 2006, 16, 332,340; S. K. Mohanty et al., Electrophoresis 2006, 27, 3772,3778]. Batch fabrication time for the device presented here was 1.5,h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100,bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118,bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. [source]


Cover Picture: Electrophoresis 5'09

ELECTROPHORESIS, Issue 5 2009
Article first published online: 3 MAR 200
Issue no. 5 is a special issue on "Fundamentals of Electrophoresis" containing 21 papers including 3 Fast Track papers. The first Fast Track paper deals with imaged CE technology for measuring charge variants of monoclonal antibodies, the second paper is on the dispersion of protein bands in a horseshoe microchannel during IEF while the third Fast Track paper reports a theoretical and experimental study on the irreversible deposition of colloidal particles from electrokinetic microfluidic flow. The remaining 18 papers of this special issue are distributed into seven parts pertaining to various fundamental topics, e.g., electromigration and dielectrophoresis in microchip channels, computer simulation of electromigration, stacking, interaction in electrophoretic systems, thermal effects, electroosmotic flow, etc. [source]


Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography

ELECTROPHORESIS, Issue 3 2009
Gaelle Proczek
Abstract An integrated microdevice was developed to couple on-chip SPE to separation by channel electrochromatography. An acrylate-based monolith was synthesized within a glass microdevice by photoinitiated polymerization. It was used for both separation and preconcentration by direct injection on the head of the stationary phase or by confining the preconcentration step in a given zone of the stationary phase. The composition of the polymerization mixture was chosen to achieve a monolithic material containing both hydrophobic and charged moieties to ensure an electroosmotic flow for separation. As a consequence the extraction procedure occurs via hydrophobic and ionic interactions. Neutral, ionizable and charged compounds were successfully preconcentrated and separated within the microdevice through electrochromatographic mechanisms, highlighting the versatility of this device. The performance of the integrated microdevice was demonstrated with the preconcentration and separation of a mixture of PAHs for which a signal enhancement factor (SEF) of 270 was achieved within 120,s of preconcentration. In the case of charged and ionizable compounds, according to the electrolyte composition, contributions of both reverse-phase and ion-exchange mechanisms were used to perform effective electrochromatographic preconcentration. A SEF of 250 was obtained for the model-charged compound within 20,s of preconcentration. Finally, the potentials of on-chip preconcentrate and separate both neutral and ionized compounds have been demonstrated using a mixture of model compounds. [source]


Analyses of gibberellins in coconut (Cocos nucifera L.) water by partial filling-micellar electrokinetic chromatography-mass spectrometry with reversal of electroosmotic flow

ELECTROPHORESIS, Issue 10 2008
Liya Ge
Abstract In this paper, we present the results of simultaneous screening of eight gibberellins (GAs) in coconut (Cocos nucifera L.) water by MEKC directly coupled to ESI-MS detection. During the development of MEKC-MS, partial filling (PF) was used to prevent the micelles from reaching the mass spectrometer as this is detrimental to the MS signal, and a cationic surfactant, cetyltrimethylammonium hydroxide, was added to the electrolyte to reverse the EOF. On the basis of the resolution of the neighboring peaks, different parameters (i.e., the pH and concentration of buffer, surfactant concentrations, length of the injected micellar plug, organic modifier, and applied separation voltage) were optimized to achieve a satisfactory PF-MEKC separation of eight GA standards. Under optimum conditions, a baseline separation of GA standards, including GA1, GA3, GA5, GA6, GA7, GA9, GA12, and GA13, was accomplished within 25,min. Satisfactory results were obtained in terms of precision (RSD of migration time below 0.9%), sensitivity (LODs in the range of 0.8,1.9,,M) and linearity (R2 between 0.981 and 0.997). MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity. PF-MEKC-MS/MS allowed the direct identification and confirmation of the GAs presented in coconut water (CW) sample after SPE, while, the quantitative analysis of GAs was performed by PF-MEKC-MS approach. GA1 and GA3 were successfully detected and quantified in CW. It is anticipated that the current PF-MEKC-MS method can be applicable to analyze GAs in a wide range of biological samples. [source]


Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument

ELECTROPHORESIS, Issue 6 2008
Guiren R. Wang Professor
Abstract For microfluidic analytical instruments, a facile, fast, and accurate instrument test is highly demanded. The test includes the quantitative verification of the relationship between pressure drop and flow velocity for the hydrodynamic pump, between the electric voltage and electroosmotic flow (EOF) for the high-voltage supply, and the chip quality. The key point for the test is the measurement of the flow velocity. However, most currently available velocimetries cannot be directly used without any instrumental modification or adding extra instruments. We applied a recently developed Laser Induced Fluorescence Photobleaching Anemometer (LIFPA) for the instrument test through measuring fluid flow velocity in a microfluidic instrument with optical measurement without any modification and extra instrument. We have successfully used the method to test Caliper HTS 250 System from Caliper Life Sciences (Hopkinton, MA) with its own light source and detector. The experimental result demonstrates that this single-point method of measuring flow velocity can be easily used for accurate test of a microfluidic instrument in less than 10,min at extremely low cost without any modification and extra instrument. [source]


Hybrid silica monolithic column for capillary electrochromatography with enhanced cathodic electroosmotic flow

ELECTROPHORESIS, Issue 21 2006
Jiwei Hu
Abstract A hybrid silica monolithic stationary phase for RP CEC was prepared by in,situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol,gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups. [source]


Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels

ELECTROPHORESIS, Issue 3 2006
Gongyue Tang
Abstract Joule heating is inevitable when an electric field is applied across a conducting medium. It would impose limitations on the performance of electrokinetic microfluidic devices. This article presents a 3-D mathematical model for Joule heating and its effects on the EOF and electrophoretic transport of solutes in microfluidic channels. The governing equations were numerically solved using the finite-volume method. Experiments were carried out to investigate the Joule heating associated phenomena and to verify the numerical models. A rhodamine,B-based thermometry technique was employed to measure the solution temperature distributions in microfluidic channels. The microparticle image velocimetry technique was used to measure the velocity profiles of EOF under the influence of Joule heating. The numerical solutions were compared with experimental results, and reasonable agreement was found. It is found that with the presence of Joule heating, the EOF velocity deviates from its normal "plug-like" profile. The numerical simulations show that Joule heating not only accelerates the sample transport but also distorts the shape of the sample band. [source]


Combination of cationic surfactant-assisted solid-phase extraction with field-amplified sample stacking for highly sensitive analysis of chlorinated acid herbicides by capillary zone electrophoresis

ELECTROPHORESIS, Issue 18 2005
Yan Xu
Abstract This report describes a novel online field-amplified sample stacking (FASS) procedure to analyze 16 chlorinated acid herbicides. By using a poly(vinyl alcohol) (PVA)-coated capillary to reduce electroosmotic flow and introducing a methanol,water plug before sample loading, the sample injection time could be very long without loss of sample and separation efficiency. Under the optimized condition, the FASS procedure could provide great sensitivity enhancement (5000,10,000-fold) and satisfactory reproducibility (relative standard deviations of migration times less than 2.4%, relative standard deviations of peak areas less than 8.0%). Combined with cationic surfactant-assisted solid-phase extraction (CSA-SPE), the limit of detection of the herbicides ranged from 0.269 to 20.3,ppt, which are two orders lower than those of the US Environmental Protection Agency standard method 515.1. The CSA-SPE-FASS-CE method was successfully applied to the analysis of local pond water. [source]


Characterization of hydroxyaromatic compounds in vegetable oils by capillary electrophoresis with direct injection in an oil-miscible KOH/propanol/methanol medium

ELECTROPHORESIS, Issue 17 2005
Carla R. B. Mendonça
Abstract The separation of hydroxyaromatic compounds in vegetable oils, including synthetic antioxidants (3- tert -butyl-4-hydroxyanisol and 2,6-di- tert -butyl-4-hydroxytoluene), E-vitamers and other natural oil components, by nonaqueous capillary electrophoresis in an oil-miscible background electrolyte (BGE) was investigated. The BGE contained 40,mM KOH in a methanol/1-propanol (PrOH) mixture (15:85 v/v). The oil samples were 1:1 diluted with PrOH and directly injected in the capillary. Under negative polarity (cathode at the injection end), the anionic solutes moved faster than the electroosmotic flow, being well-resolved among them and from the triacylglycerols. Using virgin palm, extra virgin olive, wheat germ, virgin soybean and other oils, the capability of the procedure to quickly yield a characteristic profile of the biophenols present in the sample was demonstrated. The , -, (,,+,,)- (as unresolved pair) and , -tocopherols of a soybean oil sample were quantified. [source]


Low-temperature bath/coupled-capillary/sweeping-micellar electrokinetic capillary chromatography for the separation of naphthalene-2,3-dicarboxaldehyde-derivatized dopamine and norepinephrine

ELECTROPHORESIS, Issue 11 2005
Chun-Min Shih
Abstract The use of a low-temperature (0°C) bath-assisted coupled capillary for the separation of naphthalene-2,3-dicarboxaldehyde (NDA)-derivatized dopamine and norepinephrine using the sweeping-micellar electrokinetic capillary chromatography (MEKC) mode is described. In this technique, a capillary consisting of two portions with different inside diameters is used. Therefore, the field strength inside the capillary is different. Hence, the electrophoretic migration velocities of the analytes and the electroosmotic flow (EOF) also are different. Furthermore, when a portion of the capillary (wide portion, used for sweeping) is immersed in a low-temperature bath, the viscosity of the buffer and the retention factor of the analytes inside are increased. Thus, not only are the interactions between the SDS micelles and the analytes increased, but the SDS-analytes also move more slowly. As a result, a more complete separation can be achieved, even when the sample injection volume is large, up to , 2 ,L. In general, when the volume of an injected sample is larger, the effects of sweeping and separation would become insufficient, especially when the retention values (k) of the analytes are quite different. However, this limitation can be improved when the low-temperature bath/coupled capillary/sweeping-MEKC mode is used. [source]


Rapid separation of protein isoforms by capillary zone electrophoresis with new dynamic coatings

ELECTROPHORESIS, Issue 11 2005
William W. P. Chang
Abstract Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electroosmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, ,1 -antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10 -9 m2V -1s -1. They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and ,1 -antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics. [source]


Application of dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium in wall modification for capillary electrophoresis separation of proteins

ELECTROPHORESIS, Issue 3 2005
Wei Wei
Abstract A zwitterionic surfactant, dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium (C12H25N+(CH3)2CH2CHOHCH2SO3,), named dodecyl sulfobetaine (DSB), was used as a novel modifier to coat dynamically capillary walls for capillary electrophoresis separation of basic proteins. The DSB coating suppressed the electroosmotic flow (EOF) in the pH range of 3,12. At high DSB concentration, the EOF was suppressed by more than 8.8,times. The DSB coating also prevented successfully the adsorption of cationic proteins on the capillary wall. Anions, such as Cl,, Br,, I,, SO42,, CO32,, and ClO4,, could be used as running buffer modifiers to adjust the EOF for better separation of analytes. Using this dynamically coated capillary, a mixture of eight inorganic anions achieved complete separation within 4.2,min with the efficiencies from 24,000 to 1,310,000,plates/m. In the presence of ClO4, as EOF adjustor, the separation of a mixture containing four basic proteins (lysozyme, cytochrome c, ,-chymotrypsinogen,A, and myoglobin) yielded efficiencies of 204,000,896,000,plates/m and recoveries of 88%,98%. Migration time reproducibility of these proteins was less than 0.5% relative standard deviation (RSD) from run to run and less than 3.1% RSD from day to day, showing promising application of this novel modifier in protein separation. [source]


Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation

ELECTROPHORESIS, Issue 1 2005
Dapeng Wu
Abstract A poly(dimethylsiloxane) (PDMS) microfluidic chip surface was modified by multilayer-adsorbed and heat-immobilized poly(vinyl alcohol) (PVA) after oxygen plasma treatment. The reflection absorption infrared spectrum (RAIRS) showed that 88% hydrolyzed PVA adsorbed more strongly than 100% hydrolyzed one on the oxygen plasma-pretreated PDMS surface, and they all had little adsorption on original PDMS surface. Repeating the coating procedure three times was found to produce the most robust and effective coating. PVA coating converted the original PDMS surface from a hydrophobic one into a hydrophilic surface, and suppressed electroosmotic flow (EOF) in the range of pH 3,11. More than 1 000,000 plates/m and baseline resolution were obtained for separation of fluorescently labeled basic proteins (lysozyme, ribonuclease B). Fluorescently labeled acidic proteins (bovine serum albumin, ,-lactoglobulin) and fragments of dsDNA ,X174 RF/HaeIII were also separated satisfactorily in the three-layer 88% PVA-coated PDMS microchip. Good separation of basic proteins was obtained for about 70 consecutive runs. [source]


High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques

ELECTROPHORESIS, Issue 21-22 2004
Lung-Ming Fu
Abstract An experimental and numerical investigation into the use of high-resolution injection techniques to separate DNA fragments within electrophoresis microchips is presented. The principal material transport mechanisms of electrokinetic migration, fluid flow, and diffusion are considered, and several variable-volume injection methods are discussed. A detailed analysis is provided of a double-L injection technique, which employs appropriate electrokinetic manipulations to reduce sample leakage within the microchip. The leakage effect in electroosmotic flow (EOF) is investigated using a sample composed of rhodamine B and Cy3 dye. Meanwhile, the effects of sample leakage in capillary electrophoresis (CE) separation are studied by considering the separation of 100-base pairs (bp) DNA ladders and HaeIII-digested ,X-174 DNA samples. The present experimental and simulation results indicate that the unique injection system employed in the current microfluidic chip has the ability to replicate the functions of both the conventional cross-channel and the shift-channel injection systems. Furthermore, applying the double-L injection method to these two injection systems is shown to reduce sample leakage significantly. The proposed microfluidic chip and double-L injection technique developed in this study have an exciting potential for use in high-resolution, high-throughput biochemical analysis applications and in many other applications throughout the micrototal analysis systems field. [source]


Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines

ELECTROPHORESIS, Issue 14 2004
Nigel P. Beard
Abstract We demonstrate the monolithic integration of a chemical reactor with a capillary electrophoresis device for the rapid and sensitive analysis of biogenic amines. Fluorescein isothiocyanate (FITC) is widely employed for the analysis of amino-group containing analytes. However, the slow reaction kinetics hinders the use of this dye for on-chip labeling applications. Other alternatives are available such as o -phthaldehyde (OPA), however, the inferior photophysical properties and the UV ,max present difficulties when using common excitation sources leading to a disparity in sensitivity. Consequently, we present for the first time the use of dichlorotriazine fluorescein (DTAF) as a superior in situ derivatizing agent for biogenic amines in microfluidic devices. The developed microdevice employs both hydrodynamic and electroosmotic flow, facilitating the creation of a polymeric microchip to perform both precolumn derivatization and electrophoretic analysis. The favorable photophysical properties of the DTAF and its fast reaction kinetics provide detection limits down to 1 nM and total analysis times (including on-chip mixing and reaction) of <60 s. The detection limits are two orders of magnitude lower than current limits obtained with both FITC and OPA. The optimized microdevice is also employed to probe biogenic amines in real samples. [source]


Determination of protein-ligand affinity constants from direct migration time in capillary electrophoresis

ELECTROPHORESIS, Issue 12 2004
Mikael Nilsson
Abstract A simple method to calculate dissociation constants for protein-ligand interactions by partial-filling capillary electrophoresis is demonstrated. The method uses raw migration time data for the ligand and needs only additional information about capillary inner radius and the absolute amount of protein loaded. A theoretical study supported by experimental data also demonstrates that the retention of analyte in affinity capillary electrophoresis (ACE) using the partial-filling technique depends linearly on the absolute amount of selector added but is independent of both selector zone length and selector mobility. Factors such as field strength and electroosmotic flow are also cancelled out if they are kept constant. The theory is confirmed and the usefulness of the method is demonstrated by enantioseparations using ,-acid glycoprotein (AGP) and cellulase (Cel 7A) as chiral selectors. [source]


Determination of ribavirin in human serum and plasma by capillary electrophoresis

ELECTROPHORESIS, Issue 10-11 2004
Michael C. Breadmore
Abstract The electrophoretic separation of ribavirin and 5-methylcytidine (internal standard) by capillary electrophoresis was examined. Separation was achieved using reverse polarity in a 100 mM borate electrolyte, pH 9.1, with 5 mM spermine added to reduce the electroosmotic flow. Sample preparation based on acetonitrile protein precipitation was found to be unsuitable for ribavirin analysis in patient samples due to insufficient sensitivity and interferences. Solid-phase extraction employing phenyl boronic acid cartridges provided cleaner separations. Using this approach with 500 ,L sample and reconstitution of the dried extract into 100 ,L of 33% v/v 100 mM phosphate buffer, pH 6.4 / 67% v/v acetonitrile, the detection and quantitation limits were determined to be 0.05 and 0.10 ,g/mL, respectively, a sensitivity that is suitable for therapeutic drug monitoring of ribavirin in human plasma and serum samples. The method was validated and compared to a high-performance liquid chromatography (HPLC) method, showing excellent agreement between the two for a set of samples that stemmed from patients being treated with ribavirin and interferon-,-2b for a hepatitis C virus infection. [source]


Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent

ELECTROPHORESIS, Issue 7-8 2004
Aaron R. Wheeler
Abstract Poly(dimethylsiloxane) (PDMS) microfluidic devices were prepared from different ratios of "curing agent" (which contains silicon hydride groups) to "base" (which contains vinyl-terminated noncross-linked PDMS), to determine the effect of this ratio on electroosmotic flow (EOF). In fabricating devices for this purpose, a novel method for permanently enclosing PDMS channels was developed. As a supplement to the microfluidic method, the inner walls of capillaries were coated with PDMS formed from varying ratios of curing agent to base. EOF was found to be constant for PDMS formed with each ratio, which implies that the negative surface charges do not arise from chemical species present only in the base or the curing agent. [source]


Poly(dimethylsiloxane)-based microfluidic device with electrospray ionization-mass spectrometry interface for protein identification

ELECTROPHORESIS, Issue 21 2003
Wang-Chou Sung
Abstract An easy method to fabricate poly(dimethylsiloxane) (PDMS)-based microfluidic chips for protein identification by tandem mass spectrometry is presented. This microchip has typical electrophoretic microchannels, a flow-through sampling inlet, and a sheathless nanoelectrospray ionization (ESI) interface. The surface of the microchannel was modified with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and the generated electroosmotic flow under acidic buffer condition used for the separation was found to be more stable compared to that generated by the microchannel without modification. The feasibility of the device for flow-through sampling, separation, and ESI-MS/MS analysis was demonstrated by the analysis of a standard mixture composed of three tryptic peptides. Results show that four peaks corresponding to three peptide standards and acetylated products of the standard peptide were well resolved and the deduced sequences were consistent with those expected. Furthermore, the compatibility of this device with other miniaturized devices to integrate the whole process was also explored by connecting a miniaturized enzymatic digestion cartridge and a desalting cartridge in series to the sampling inlet of the microchip for the identification of a model protein, ,-casein. [source]


Microfluidic device for capillary electrochromatography-mass spectrometry

ELECTROPHORESIS, Issue 21 2003
Iulia M. Lazar
Abstract A novel microfabricated device that integrates a monolithic polymeric separation channel, an injector, and an interface for electrospray ionization-mass spectrometry detection (ESI-MS) was devised. Microfluidic propulsion was accomplished using electrically driven fluid flows. The methacrylate-based monolithic separation medium was prepared by photopolymerization and had a positively derivatized surface to ensure electroosmotic flow (EOF) generation for separation of analytes in a capillary electrochromatography (CEC) format. The injector operation was optimized to perform under conditions of nonuniform EOF within the microfluidic channels. The ESI interface allowed hours of stable operation at the flow rates generated by the monolithic column. The dimensions of one processing line were sufficiently small to enable the integration of 4,8 channel multiplexed structures on a single substrate. Standard protein digests were utilized to evaluate the performance of this microfluidic chip. Low- or sub-fmol amounts were injected and detected with this arrangement. [source]


Large-volume sample stacking combined with separation by 2-hydroxypropyl-,-cyclodextrin for analysis of isoxyzolylpenicillins by capillary electrophoresis

ELECTROPHORESIS, Issue 17 2003
Zhiwei Zhu
Abstract A simple, quick and sensitive capillary electrophoretic technique has been developed for the pharmaceutical analysis of isoxazolylpenicillins (oxacillin, cloxacillin and dicloxacillin) at trace levels for the first time. This method comprises large-volume sample stacking using the electroosmotic flow (EOF) pump (LVSEP), separation using 2-hydroxypropyl-,-cyclodextrin (HP-,-CD) as selective complex-forming background electrolyte additive, and direct UV detection. A complete resolution was achieved in the optimal background electrolyte containing 5.2 mM HP-,-CD. LVSEP was successfully applied in their determinations to improve the sensitivity, where the EOF in the buffer zone was suppressed by using an acidic buffer with pH 3.6. The detection limits of the current technique were found to be 2.0 ,g/L for each of the isoxazolylpenicillins based on the signal-to-noise ratio of 3. The curves of peak response versus concentration were linear from 5.0 to 400.0 ,g/L with regression coefficients of 0.9982, 0.9986 and 0.9976, respectively. The interaction of isoxazolylpenicillins with HP-,-CD was discussed. The association constants for complexes of HP-,-CD with isoxazolylpenicillins were determined by electrophoretic method. The obtained association constants were 27.3, 34.9, and 48.5 M,1, respectively, being proportional to their hydrophobic properties and steric hindrances. A simple and easy-manipulative sample preparation method was developed and validated by analyzing commercially available milk samples. It was found that with current sample preparation process and instrumentation system, 0.1 mL of milk sample is enough for the analysis of isoxazolylpenicillins to meet European Union (EU) guideline of 30 ,g/kg. [source]


Simultaneous separation of fifteen approved protease and reverse transcriptase inhibitors for human immunodeficiency virus therapy by capillary electrophoresis

ELECTROPHORESIS, Issue 4 2003
Nguyen Duc Tuan
Abstract In the present investigation, a novel approach towards a complete separation of all 15 protease and reverse transcriptase inhibitors which are currently approved for use in highly active antiretroviral therapy in a single analytical run is presented. The developed method employs an acidic background electrolyte with sodium polyanethol sulfonate (SPAS) as polyanionic electroosmotic flow (EOF) modifier to establish a strong cathodic EOF, sodium dodecyl sulfate (SDS) as pseudostationary selector, and acetonitrile and ethanol as organic modifiers. Separation of the analytes is based on two different mechanisms. The more basic analytes are protonated at the prevailing pH conditions and thus migrate in front of the cathodic EOF, whereas the less basic and neutral analytes interact with the SDS and are retained after the EOF. By optimizing electrolyte pH, the amount of solvents and SDS concentrations in the background electrolyte it is possible to completely separate all compounds of interest. [source]


Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection

ELECTROPHORESIS, Issue 4 2003
Pavel Coufal
Abstract Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. [source]


Capillary electrochromatography with monolithic silica column:,I.

ELECTROPHORESIS, Issue 3 2003
Preparation of silica monoliths having surface-bound octadecyl moieties, applications to the separation of neutral, charged species, their chromatographic characterization
Abstract Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 ,m ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (>,2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160,000 plates/m, a value comparable to that obtained on columns packed with 3 ,m C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio. [source]


Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns

ELECTROPHORESIS, Issue 22-23 2002
Abdul Malik
Abstract The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology. [source]