Home About us Contact | |||
Electronic Wave Functions (electronic + wave_function)
Selected AbstractsCoherent superposition of resonance wave function in terms of weighted orthogonalized natural localized configurationsINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 2 2008A. H. Pakiari Abstract In this research, the projection technique has been applied in order to decompose the electronic wave function into its weighted orthogonalized resonance components. These components have been constructed by determinants whose orbitals are selected among natural bond orbitals. However, the procedure is general and any other localized orbitals can be used as well. Both , and , delocalize systems have been considered in order to check the reliability of the calculated resonance weights. For ,-systems, the presented procedure could predict significant decrease of weight of certain resonance structures when the molecular planarity was destroyed. Water cyclic clusters were also tested and the results confirmed the existence of strong ,-delocalization in the clusters. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source] The oxygen vacancy in Ga2O3: a double resonance investigation,MAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2005H. J. Kümmerer Abstract When produced under reducing conditions, ,-Ga2O3 is transformed into an n -type semiconductor with delocalized conduction electrons that exhibit a very strong electron spin resonance (ESR) and a strong hyperfine coupling to the gallium nuclei of the host lattice. We apply the Overhauser-shift technique to investigate single crystals of this compound. With extension to the high magnetic field of a W-band spectrometer, we were able to resolve all spectral lines that were recorded and to assign them to their corresponding electronic and nuclear states. This separate analysis was the basis to access additional sample characteristics: the hyperfine coupling that is actually averaged out in the ESR signal, as well as the nuclear relaxation rates could be analyzed. Systematic measurements by varying the microwave power revealed the Overhauser shift in thermal equilibrium. The signal could be tracked to very small microwave saturation parameters, at which the deviation from the usual linear relation between power and shift becomes evident and the shift clearly approaches a constant value. This value in equilibrium was determined directly from a fit to a sequence of measurements, whereas standard X-band experiments only provided indirect conclusions. The probability densities of the electrons at the nuclei in the two nonequivalent crystallographic positions,the lattice sites with octahedral and tetrahedral coordination,could also be determined directly. The enhanced resolution revealed an otherwise hidden substructure in the nuclear resonance signals. On the basis of a microscopic model, this structure could be used to probe the environment of the oxygen vacancy more precisely and to determine the extension of the electronic wave function of the donor electrons. Copyright © 2005 John Wiley & Sons, Ltd. [source] Nonlinear wave function expansions: A progress reportINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 15 2007Ron Shepard Abstract Some recent progress is reported for a novel nonlinear expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions using the Graphical Unitary Group Approach and the wave function is expanded in a basis of product functions, allowing application to closed and open shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational expansion that depends on a relatively small number of nonlinear parameters called arc factors. Efficient recursive procedures for the computation of reduced one- and two-particle density matrices, overlap matrix elements, and Hamiltonian matrix elements result in a very efficient computational procedure that is applicable to very large configuration state function (CSF) expansions. A new energy-based optimization approach is presented based on product function splitting and variational recombination. Convergence of both valence correlation energy and dynamical correlation energy with respect to the product function basis dimension is examined. A wave function analysis approach suitable for very large CSF expansions is presented based on Shavitt graph node density and arc density. Some new closed-form expressions for various Shavitt Graph and Auxiliary Pair Graph statistics are presented. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source] Development of analytic energy gradient method in nuclear orbital plus molecular orbital theoryINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 14 2007Minoru Hoshino Abstract This study formulates the analytic energy gradients in the Hartree-Fock calculations of the NOMO theory, which simultaneously determines nuclear and electronic wave functions without the Born-Oppenheimer approximation. The formulations correspond to the translation- and rotation-contaminated (TRC), translation-free (TF), and translation- and rotation-free (TRF) treatments. The optimizations of the orbital centers for several diatomic molecules, which have been performed by using the analytic energy gradients, have given the averaged nuclear distances {R0} reflecting the quantum effects of nuclei and the anharmonicity of the potential energy surfaces. The numerical assessments have clarified that the effects of eliminating the translational and rotational contaminations, i.e., the TRF effects are important to improve the evaluations of {R0}, especially for the molecules including hydrogen atoms. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source] Using an interval branch-and-bound algorithm in the Hartree,Fock methodINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005Carlile C. Lavor Abstract The Hartree,Fock (HF) method is widely used to obtain atomic and molecular electronic wave functions, based on the minimization of a functional of the energy. We propose to use a deterministic global optimization algorithm, based on a branch-and-bound method, that applies techniques of interval arithmetic. This algorithm is applied directly to the minimization of the energy expression derived from the HF method. The proposed approach was successfully applied to the ground state of He and Be atoms. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] Orbital-orthogonality constraints and basis-set optimizationJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2006Fabio E. Penotti Abstract A new procedure is presented for introducing arbitrary orbital-orthogonality constraints in the variational optimization of otherwise nonorthogonal multiconfiguration electronic wave functions. It is based on suitable analytical changes to the expressions for the first and second derivatives of the electronic energy with respect to the independent variational parameters, and can be applied in the presence of symmetry constraints. It is tested using a second-derivative optimization procedure, the Optimized Basis Set,Generalized Multiconfiguration Spin-Coupled (OBS-GMCSC) approach, that can treat basis-function exponential parameters as variational parameters, to be optimized simultaneously with configuration, spin-coupling, and orbital coefficients. This enables rigorous optimization of basis-set exponential parameters even for fully orthogonal multiconfiguration wave functions. Test calculations are carried out, with optimized even-tempered basis sets, on Li2 and on the CH radical. For the latter, special attention is paid to the electronic spin density at the nuclei. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 762,772, 2006 [source] Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithographyPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 4 2010G. Dobrik Abstract Due to its exciting physical properties and sheet-like geometry graphene is in the focus of attention both from the point of view of basic science and of potential applications. In order to fully exploit the advantage of the sheet-like geometry very high resolution, crystallographicaly controlled lithography has to be used. Graphene is a zero gap semiconductor, so that a field effect transistor (FET) will not have an "off" state unless a forbidden gap is created. Such a gap can be produced confining the electronic wave functions by etching narrow graphene nanoribbons (GNRs) typically of a few nanometers in width and with well defined crystallographic orientation. We developed the first lithographic method able to achieve GNRs that have both nanometer widths and well defined crystallographic orientation. The lithographic process is carried out by the local oxidation of the sample surface under the tip of a scanning tunneling microscopy (STM). Crystallographic orientation is defined by acquiring atomic resolution images of the surface to be patterned. The cutting of trenches with controlled depth and of a few nanometer in width, folding and manipulation of single graphene layers is demonstrated. The narrowest GNR cut by our method is of 2.5,nm width, scanning tunneling spectroscopy (STS) showed that it has a gap of 0.5,eV, comparable to that of germanium, which allows room temperature operation of graphene nanodevices. [source] Electronic structure of Fe4Si4,xGex (x = 0,4) compounds: ab initio calculationPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2009G. I. Ameereh Abstract The structural and electronic properties of Fe4Si4,xGex (x = 0,4) with a cubic B20-type structure are investigated by density functional theory using an ab initio method. The calculations are based on a plane-wave expansion of the electronic wave functions and performed using the local density approximation. It is found that these compounds are narrow-gap semiconductors in the non-magnetic state. The band gap is found to decrease with increasing x, and the B20 FeSi is a small-gap semiconductor with sharp density of states features near the top of the valence band. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |