Home About us Contact | |||
Electron Transfer Step (electron + transfer_step)
Selected AbstractsThe function of D1-H332 in Photosystem II electron transport studied by thermoluminescence and chlorophyll fluorescence in site-directed mutants of Synechocystis 6803FEBS JOURNAL, Issue 17 2004Yagut Allahverdiyeva The His332 residue of the D1 protein has been identified as the likely ligand of the catalytic Mn ions in the water oxidizing complex (Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. & Iwata, S. (2004) Science 303, 1831,1838). However, its function has not been fully clarified. Here we used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-H333E, D1-H332D and D1-H332S mutations on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutants are not photoautotrophic they all show flash-induced thermoluminescence and chlorophyll fluorescence, which originate from the S2QA, and S2QB, recombinations demonstrating that charge stabilization takes place in the water oxidizing complex. However, the conversion of S2 to higher S states is inhibited and the energetic stability of the S2QA, charge pair is increased by 75, 50 and 7 mV in the D1-H332D, D1-H332E and D1-H332S mutants, respectively. This is most probably caused by a decrease of Em(S2/S1). Concomitantly, the rate of electron donation from Mn to Tyr-Z, during the S1 to S2 transition is slowed down, relative to the wild type, 350- and 60-fold in the D1-H332E and D1-H332D mutants, respectively, but remains essentially unaffected in D1-H332S. A further effect of the D1-H332E and D1-H332D mutations is the retardation of the QA to QB electron transfer step as an indirect consequence of the donor side modification. Our data show that although the His residue in the D1-332 position can be substituted by other metal binding residues for binding photo-oxidisable Mn it is required for controlling the functional redox energetics of the Mn cluster. [source] Site-specific deposition of Ag nanoparticles on ZnO nanorod arrays via galvanic reduction and their SERS applicationsJOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2010Wei Song Abstract A controllable heterostructure consisting of ZnO nanorod arrays with attached Ag nanoparticles at only one end has been synthesized via a facile and convenient galvanic reduction method. Scanning electron microscopic images of these nanostructures showed good selectivity of Ag deposition on the tip of ZnO nanorod arrays. The formation of these regular AgZnO heterogeneous nanorod arrays can be explained by a localization of the electrons at the ends of the ZnO nanorods after the electron transfer step. By tuning the reaction time and the concentration of silver nitrate, the density of Ag nanoparticles on the tip of ZnO nanorods can be well controlled. Owing to the introduction of Ag nanoparticles with different densities, the resulting AgZnO heterogeneous nanorod arrays have been proved to be a versatile substrate for surface-enhanced Raman scattering not only for common organic molecules but also for label-free protein detection. Copyright © 2009 John Wiley & Sons, Ltd. [source] Modeling aspects of mechanisms for reactions catalyzed by metalloenzymesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2001P. E. M. Siegbahn Different models to treat metal-catalyzed enzyme reactions are investigated. The test case chosen is the recently suggested full catalytic cycle of manganese catalase including eight different steps. This cycle contains OO and OH activations, as well as electron transfer steps and redox active reactions, and is therefore believed to be representative of many similar systems. Questions concerning modeling of ligands and the accuracy of the computational model are studied. Imidazole modeling of histidines are compared to ammonia modeling, and formate modeling compared to acetate modeling of glutamates. The basis set size required for the geometry optimization and for the final energy evaluation is also investigated. The adequacy of the model is judged in relation to the inherent accuracy achievable with the hybrid DFT method B3LYP. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1634,1645, 2001 [source] IMPACT OF IRON LIMITATION ON THE PHOTOSYNTHETIC APPARATUS OF THE DIATOM CHAETOCEROS MUELLERI (BACILLARIOPHYCEAE)JOURNAL OF PHYCOLOGY, Issue 6 2001Margaret Davey Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells. [source] |