Home About us Contact | |||
Electron Transfer Rate Constant (electron + transfer_rate_constant)
Selected AbstractsXanthine Sensors Based on Anodic and Cathodic Detection of Enzymatically Generated Hydrogen PeroxideELECTROANALYSIS, Issue 6 2007Aminur Rahman Abstract A xanthine biosensor was fabricated by the covalent immobilization of xanthine oxidase (XO) onto a functionalized conducting polymer (Poly-5, 2,: 5,, 2,-terthiophine-3-carboxylic acid), poly-TTCA through the formation of amide bond between carboxylic acid groups of poly-TTCA and amine groups of enzyme. The immobilization of XO onto the conducting polymer (XO/poly-TTCA) was characterized using cyclic voltammetry, quartz crystal microbalance (QCM), and X-ray photoelectron spectroscopy (XPS) techniques. The direct electron transfer of the immobilized XO at poly-TTCA was found to be quasireversible and the electron transfer rate constant was determined to be 0.73,s,1. The biosensor efficiently detected xanthine through oxidation at +0.35,V and reduction at ,0.25,V (versus Ag/AgCl) of enzymatically generated hydrogen peroxide. Various experimental parameters, such as pH, temperature, and applied potential were optimized. The linear dynamic ranges of anodic and cathodic detections of xanthine were between 5.0×10,6,1.0×10,4 M and 5.0×10,7 to 1.0×10,4,M, respectively. The detection limits were determined to be of 1.0×10,6,M and 9.0×10,8,M with anodic and cathodic processes, respectively. The applicability of the biosensor was tested by detecting xanthine in blood serum and urine real samples. [source] Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide ElectrodesELECTROANALYSIS, Issue 12 2005Emmanuel Topoglidis Abstract The immobilization of two acidic, low isoelectric point proteins, green fluorescence protein and ferredoxin (FRD) is investigated on nanocrystalline, mesoporous TiO2 and SnO2 electrodes. Modification of these electrodes with a cationic polypeptide (poly- L -lysine) or an aminosilane prior to protein immobilization is found to enhance protein binding at least ten fold, attributed to more favorable protein/electrode electrostatic interactions. Cyclic voltammetry studies of FRD-modified SnO2 electrodes indicate reversible protein electrochemistry with a midpoint potential of ,0.59,V (vs. Ag/AgCl) and an interfacial electron transfer rate constant of 0.45,s,1. [source] Immobilized Cytochrome c Sensor in Organic/Aqueous Media for the Characterization of Hydrophilic and Hydrophobic AntioxidantsELECTROANALYSIS, Issue 18 2003Moritz Beissenhirtz Abstract A method for the characterization of antioxidants is introduced, which allows the measurement of pure hydrophilic and hydrophobic substances as well as complex cosmetic creams. The sensor is based on cytochrome c covalently immobilized on a gold wire electrode working in mixtures of phosphate buffer and organic solvents. It is combined with a superoxide generating enzyme system. The decrease of the superoxide concentration in the test solution by the added antioxidants is detected and used for the quantification of their antioxidative efficiency. Electrochemical properties of immobilized cytochrome c, such as formal potential and heterogeneous electron transfer rate constant, have been investigated in mixtures of aqueous buffer and DMSO, methanol, butanediol, and THF. The maximum organic solvent content for quasi-reversible electrode behavior was correlated to spectroscopic measurements. The activity of the radical producing enzyme in such media was determined and the radical generation characterized. The antioxidative properties of pure substance such as ascorbic acid and Biochanin A as well as of five anti-ageing cosmetic creams were studied. This showed also the influence of matrix composition on the efficiency of antioxidative supplements. [source] Electron Transfer Kinetics of Ferrocene at Microcrystalline Boron-Doped Diamond Electrodes: Effect of Solvent and ElectrolyteELECTROANALYSIS, Issue 4 2003Shannon Haymond Abstract Cyclic voltammetric measurements were made using well-characterized microcrystalline boron-doped diamond thin-film electrodes to test the material's responsiveness for ferrocene as a function of scan rate, solvent, and electrolyte composition. Apparent heterogeneous electron transfer rate constants, k°app, of 0.042±0.015, 0.048±0.015, and 0.008±0.002,cm/s were observed in 0.1,M NaClO4/CH3CN, 0.1,M TBAClO4/CH3CN, and 0.1M TBAClO4/CH2Cl2, respectively. These rate constants, obtained using electrodes without any type of pretreatment, are similar to those observed for freshly polished glassy carbon. The results demonstrate that boron-doped diamond is a viable material for the electrochemical analysis of nonaqueous analytes. [source] Distance dependence of long-range electron transfer through helical peptides,JOURNAL OF PEPTIDE SCIENCE, Issue 2 2008Minako Kai Abstract Helical peptides of 8mer, 16mer, and 24mer carrying a disulfide group at the N -terminal and a ferrocene moiety at the C -terminal were synthesized, and they were self-assembled on gold by a sulfur,gold linkage. Infrared reflection,absorption spectroscopy and ellipsometry confirmed that they formed a monolayer with upright orientation. Cyclic voltammetry showed that the electron transfer from the ferrocene moiety to gold occurred even with the longest 24mer peptide. Chronoamperometry and electrochemical impedance spectroscopy were carried out to determine the standard electron transfer rate constants. It was found that the dependence of the electron-transfer rates on the distance was significantly weak with the extension of the chain from 16mer to 24mer (decay constant , = 0.02,0.04). This dependence on distance cannot be explained by an electron tunneling mechanism even if increased hydrogen-bonding cooperativity or molecular dynamics is considered. It is thus concluded that this long-range electron transfer is operated by an electron hopping mechanism. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] Photoinduced Electron Transfer Reactions by SmI2 in THF: Luminescence Quenching Studies and Mechanistic InvestigationsCHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2005Edamana Prasad Dr. Abstract Photoluminescence quenching studies of SmI2 in dry THF were carried out in the presence of five different classes of compounds: ketone, alkyl chloride, nitrile, alkene and imine. The free energy change (,G,0) of the photoinduced electron transfer (PET) reactions was calculated from the redox potentials of the donor (SmI2) and acceptors. The bimolecular quenching constants (kq) derived from the Stern,Volmer experiments parallel the free energy changes of the PET processes. The observed quenching constants were compared with the theoretically derived electron transfer rate constants (ket) from Marcus theory and found to be in good agreement when a value of ,=167 kJ,mol,1 (40 kcal,mol,1) was used for the reorganization energy of the system. A careful comparison of the excited state dynamics of SmII in the solid state to the results obtained in solution (THF) provides new insight in to the excited states of SmII in THF. The activation parameters determined for the PET reactions in SmI2/1-chlorobutane system are consistent with a less ordered transition state and high degree of bond reorganization in the activated complex compared to similar ground state reactions. Irradiation studies clearly show that SmI2 acts as a better reductant in the excited state and provides an alternative pathway for rate enhancement in known and novel functional group reductions. [source] |