Home About us Contact | |||
Electron Capture Dissociation (electron + capture_dissociation)
Selected AbstractsPhosphopeptide fragmentation and analysis by mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2009Paul J. Boersema Abstract Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision-induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss-dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS3 and multistage activation (MSA), have been designed to generate more sequence-informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron-driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large-scale phosphoproteomics studies. Copyright © 2009 John Wiley & Sons, Ltd. [source] The role of electron capture dissociation in biomolecular analysisMASS SPECTROMETRY REVIEWS, Issue 2 2005Helen J. Cooper Abstract The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:201,222, 2005 [source] Comparison of collision- versus electron-induced dissociation of Pt(II) ternary complexes of histidine- and methionine-containing peptides,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2009Linda Feketeová Incubation of the histidine-containing peptides (GH, HG, GGH, GHG, HGG) and methionine-containing peptides (GM, MG, GGM, GMG, MGG) with the platinum complexes [Pt(terpy)Cl]+ (A) and [Pt(dien)Cl]+ (B) followed by electrospray ionisation (ESI) led to a number of singly and doubly charged ternary platinum peptide complexes, including [Pt(L)M]2+ and [Pt(L)M,H]+ (where L,=,the ligand terpy or dien; M is a peptide). Each of the [Pt(L)M]2+ complexes was subjected to electron capture dissociation (ECD), collision-induced dissociation (CID) and electron-induced dissociation (EID), while each of the [Pt(L)M,H]+ complexes was subjected to CID and EID. Results from ECD suggest that the free electron is captured by the metal ion thus weakening the bonds to its ligands. In the case of the ligand terpy, which binds more strongly than dien, this weakening leads to the loss of the peptide. The minor products in the ECD spectra of [Pt(terpy)M]2+ complexes do show fragmentation along the peptide backbone, but the ions observed are of the a-, b-, and y-type. For the complexes with methionine-containing peptides, a marker ion, [Pt(L)SCH3]+, was found which is indicative of binding of Pt to the methionine side chain. For the histidine-containing peptides, an ion containing platinum, the auxiliary ligand, and the histidine imine was observed in many instances, thus indicating the binding of the histidine side chain to the metal, but other modes of Pt coordination (N-terminus) were also found to be competitive. These findings are consistent with a recent finding (Sze et al. J. Biol. Inorg. Chem. 2009; 14: 163) that Pt occupies the methionine-rich copper(I)-binding site rather than histidine-rich copper(II)-binding site in the CopC protein. Copyright © 2009 John Wiley & Sons, Ltd. [source] Liquid chromatography and electron-capture dissociation in Fourier transform ion cyclotron resonance mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2002Magnus Palmblad Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications. Copyright © 2002 John Wiley & Sons, Ltd. [source] |