Home About us Contact | |||
ELISA Experiments (elisa + experiment)
Selected AbstractsHev b 9, an enolase and a new cross-reactive allergen from Hevea latex and moldsFEBS JOURNAL, Issue 24 2000Purification, characterization, cloning, expression Natural rubber latex allergy is an IgE-mediated disease that is caused by proteins that elute from commercial latex products. A complementary DNA (cDNA) coding for Hev b 9, an enolase (2-phospho- d -glycerate hydrolyase) and allergen from latex of the rubber tree Hevea brasiliensis, was amplified by PCR. The PCR primers were designed according to conserved regions of enolases from plants. The obtained cDNA amplification product consisted of 1651 bp and encoded a protein of 445 amino-acid residues with a calculated molecular mass of 47.6 kDa. Sequence comparisons revealed high similarities of the Hevea latex enolase to mold enolases that have been identified as important allergens. In addition, the crucial amino-acid residues that participate in the formation of the catalytic site and the Mg2+ binding site of enolases were also conserved. Hevea latex enolase was produced as a recombinant protein in Escherichia coli with an N-terminal hexahistidyl tag, and purified by affinity chromatography. The yield amounted to 110 mg of purified Hev b 9 per litre of bacterial culture. The recombinant allergen bound IgE from latex, as well as mold-allergic patients, in immunoblot and ELISA experiments. The natural enolase was isolated from Hevea latex by (NH4)2SO4 precipitation and ion exchange chromatography. The natural and the recombinant (r)Hev b 9 showed equivalent enzymatic activity. Patients' IgE-antibodies preincubated with rHev b 9 lost their ability to bind to natural (n) Hev b 9, indicating the identity of the B-cell epitopes on both molecules. Cross-reactivity with two enolases from Cladosporium herbarum and Alternaria alternata was determined by inhibition of IgE-binding to these enolases by rHev b 9. Therefore, enolases may represent another class of highly conserved enzymes with allergenic potentials. [source] Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergyMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue S2 2008Christina Oberhuber Abstract Allergy to kiwifruit appears to have become more common in Europe and elsewhere during the past several years. Seven allergens have been identified from kiwifruit so far, with actinidin, kiwellin and the thaumatin-like protein as the most relevant ones. In contrast to other fruits, no Bet v 1 homologues were characterized from kiwifruit so far. We cloned, purified, and characterized recombinant Bet v 1-homologous allergens from green (Actinidia deliciosa, Act d 8) and gold (Actinidia chinensis, Act c 8) kiwifruit, and confirmed the presence of its natural counterpart by inhibition assays. Well-characterized recombinant Act d 8 and Act c 8 were recognized by birch pollen/kiwifruit (confirmed by double-blind placebo-controlled food challenge) allergic patients in IgE immunoblots and ELISA experiments. The present data point out that Bet v 1 homologues are allergens in kiwifruit and of relevance for patients sensitized to tree pollen and kiwifruit, and might have been neglected so far due to low abundance in the conventional extracts used for diagnosis. [source] Characterization of peach thaumatin-like proteins and their identification as major peach allergensCLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2010A. Palacín Summary Background Peach is the most important fruit related to food allergy in the Mediterranean area. Pru p 3, its lipid transfer protein, has been described as the principal allergen responsible for cross-reactivities with other foods and pollen and the severity of clinical symptoms. However, the involvement of other allergenic families cannot be ruled out. Thaumatin-like proteins (TLPs) have been described as food allergen in several fruits, such as apple, cherry, kiwi and banana, and pollen. Objective To identify members of the TLP family in peach fruit and to characterize putative allergens. Methods Through two-dimensional (2D) electrophoresis of peach extract and immunodetections with a pool of peach-allergic patients, IgE-binding spots were identified and the corresponding proteins purified and characterized as allergens by in vitro and in vivo assays. Three isoforms, belonging to the TLP family, were purified by different chromatographic systems and characterized by N -terminal amino acid sequences, molecular weight determination (MALDI) and enzymatic activity analysis (,-1,3-gluconase test and inhibition growth of fungi). In the same way, their IgE-binding capacity and allergenic activity were tested by ELISA assays, basophil activation tests and skin prick tests (SPT). Results Two peach-TLPs, Pru p 2.0101 and Pru p 2.0201, were identified as IgE-binding spots by 2D electrophoresis. Another peach-TLP, Pru p 2.0301, was cloned and produced as recombinant protein in a yeast system. The three isoforms were purified and characterized as TLPs by immunoblotting with anti-chestnut TLP antibodies and anti-plant N -asparagine complex glycan (anti-cross-reactive carbohydrate determinant). All of them showed ,-1,3-glucanase activity and inhibition of fungal growth. The three TLPs were recognized by around 50% of the sera from 31 patients analysed in ELISA experiments. All three gave a positive response to an SPT and/or in basophil activation experiments. Conclusion Three isoforms, belonging to the TLP family, were identified in peach as principal allergens. Their prevalence, observed in in vitro, ex vivo and in vivo analyses, suggests that they are important allergens and should therefore be included in the routine diagnosis of peach allergy, at least in the Mediterranean area. Cite this as: A. Palacín, L. Tordesillas, P. Gamboa, R. Sanchez-Monge, J. Cuesta-Herranz, M. L. Sanz, D. Barber, G. Salcedo and A. Díaz-Perales, Clinical & Experimental Allergy, 2010 (40) 1422,1430. [source] Preferential recognition of the phosphorylated major linear B-cell epitope of La/SSB 349,368aa by anti-La/SSB autoantibodies from patients with systemic autoimmune diseasesCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2006A. G. Terzoglou Summary Sera from patients with primary Sjögren Syndrome (pSS) or Systemic Lupus Erythematosus (SLE) often contain autoantibodies directed against La/SSB. The sequence 349,368aa represents the major B-cell epitope of La/SSB, also it contains, at position 366, a serine aminoacid residue which constitutes the main phosphorylation site of the protein. In this study we investigated the differential recognition of the 349,368aa epitope and its phosphorylated form by antibodies found in sera from patients with systemic autoimmune diseases. Peptides corresponding to the sequence of the unphosphorylated (pep349,368aa) and the phosphorylated form (pep349,368aaPh) of the La/SSB epitope 349,368aa, as well as to a truncated form spanning the sequence 349,364aa and lacking the phosphorylation site (pep349,364aa), were synthesized. Sera from 53 patients with pSS and SLE with anti-La/SSB specificity, 30 patients with pSS and SLE without anti-La/SSB antibodies, 25 patients with rheumatoid arthritis and 32 healthy individuals were investigated by ELISA experiments. Autoantibodies to pep349,368aaPh were detected in sera of anti-La/SSB positive patients with a higher prevalence compared to the pep349,368aa (66%versus 45%). Pep349,368aaPh inhibited the antibody binding almost completely (92%), while pep349,368aa inhibited the binding only partially (45%). Anti-La/SSB antibodies presented a higher relative avidity for the phosphorylated than the unphosphorylated peptide. Immunoadsorbent experiments using the truncated peptide pep349,364aa indicated that the flowthrough showed a selective specificity for pep349,368aaPh, while the eluted antibodies reacted with both peptide analogues of the La/SSB epitope. These data suggest that sera from pSS and SLE patients with anti-La/SSB reactivity possess autoantibodies that bind more frequently and with a higher avidity to the phosphorylated major B-cell epitope of the molecule. [source] |