Element-free Galerkin (element-free + galerkin)

Distribution by Scientific Domains

Terms modified by Element-free Galerkin

  • element-free galerkin method

  • Selected Abstracts


    Essential boundary condition enforcement in meshless methods: boundary flux collocation method

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2002
    Cheng-Kong C. Wu
    Abstract Element-free Galerkin (EFG) methods are based on a moving least-squares (MLS) approximation, which has the property that shape functions do not satisfy the Kronecker delta function at nodal locations, and for this reason imposition of essential boundary conditions is difficult. In this paper, the relationship between corrected collocation and Lagrange multiplier method is revealed, and a new strategy that is accurate and very simple for enforcement of essential boundary conditions is presented. The accuracy and implementation of this new technique is illustrated for one-dimensional elasticity and two-dimensional potential field problems. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Some numerical issues using element-free Galerkin mesh-less method for coupled hydro-mechanical problems

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2009
    Mohammad Norouz Oliaei
    Abstract A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydro-mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro-mechanical problems. Examples are studied and compared with closed-form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro-mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Coupling of mesh-free methods with finite elements: basic concepts and test results

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2006
    T. Rabczuk
    Abstract This paper reviews several novel and older methods for coupling mesh-free particle methods, particularly the element-free Galerkin (EFG) method and the smooth particle hydrodynamics (SPH), with finite elements (FEs). We study master,slave couplings where particles are fixed across the FE boundary, coupling via interface shape functions such that consistency conditions are satisfied, bridging domain coupling, compatibility coupling with Lagrange multipliers and hybrid coupling methods where forces from the particles are applied via their shape functions on the FE nodes and vice versa. The hybrid coupling methods are well suited for large deformations and adaptivity and the coupling procedure is independent of the particle distance and nodal arrangement. We will study the methods for several static and dynamic applications, compare the results to analytical and experimental data and show advantages and drawbacks of the methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Lower-bound limit analysis by using the EFG method and non-linear programming

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2008
    Shenshen Chen
    Abstract Intended to avoid the complicated computations of elasto-plastic incremental analysis, limit analysis is an appealing direct method for determining the load-carrying capacity of structures. On the basis of the static limit analysis theorem, a solution procedure for lower-bound limit analysis is presented firstly, making use of the element-free Galerkin (EFG) method rather than traditional numerical methods such as the finite element method and boundary element method. The numerical implementation is very simple and convenient because it is only necessary to construct an array of nodes in the domain under consideration. The reduced-basis technique is adopted to solve the mathematical programming iteratively in a sequence of reduced self-equilibrium stress subspaces with very low dimensions. The self-equilibrium stress field is expressed by a linear combination of several self-equilibrium stress basis vectors with parameters to be determined. These self-equilibrium stress basis vectors are generated by performing an equilibrium iteration procedure during elasto-plastic incremental analysis. The Complex method is used to solve these non-linear programming sub-problems and determine the maximal load amplifier. Numerical examples show that it is feasible and effective to solve the problems of limit analysis by using the EFG method and non-linear programming. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Time accurate consistently stabilized mesh-free methods for convection dominated problems

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2003
    Antonio Huerta
    Abstract The behaviour of high-order time stepping methods combined with mesh-free methods is studied for the transient convection,diffusion equation. Particle methods, such as the element-free Galerkin (EFG) method, allow to easily increase the order of consistency and, thus, to formulate high-order schemes in space and time. Moreover, second derivatives of the EFG shape functions can be constructed with a low extra cost and are well defined, even for linear interpolation. Thus, consistent stabilization schemes can be considered without loss in the convergence rates. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Adaptive crack propagation analysis with the element-free Galerkin method

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2003
    Gye-Hee Lee
    Abstract In this paper, an adaptive analysis of crack propagation based on the error estimation by the element-free Galerkin (EFG) method is presented. The adaptivity analysis in quasi-static crack propagation is achieved by adding and/or removing the nodes along the background integration cells, those are refined or recovered according to the estimated errors. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of the proposed adaptive procedure, the crack propagation behaviour is investigated for several examples. The results of these examples show the efficiency and accuracy of the proposed scheme in crack propagation analysis. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Moving kriging interpolation and element-free Galerkin method

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2003
    Lei Gu
    Abstract A new formulation of the element-free Galerkin (EFG) method is presented in this paper. EFG has been extensively popularized in the literature in recent years due to its flexibility and high convergence rate in solving boundary value problems. However, accurate imposition of essential boundary conditions in the EFG method often presents difficulties because the Kronecker delta property, which is satisfied by finite element shape functions, does not necessarily hold for the EFG shape function. The proposed new formulation of EFG eliminates this shortcoming through the moving kriging (MK) interpolation. Two major properties of the MK interpolation: the Kronecker delta property (,I(sJ)=,IJ) and the consistency property (,In,I(x)=1 and ,In,I(x)xIi=xi) are proved. Some preliminary numerical results are given. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Numerical simulations of viscous flows using a meshless method

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2008
    Changfu You
    Abstract This paper uses the element-free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows. The control equations are discretized with the standard Galerkin method in space and a fractional step finite element scheme in time. Regular background cells are used for the quadrature. Several classical fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven cavity. The flow field computed with the EFG method compared well with those calculated using the finite element method (FEM) and finite difference method. The simulations show that although EFG is more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder. These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal number agrees well with previous results. Copyright © 2008 John Wiley & Sons, Ltd. [source]