Element Technique (element + technique)

Distribution by Scientific Domains

Kinds of Element Technique

  • finite element technique


  • Selected Abstracts


    A numerical method for the study of shear band propagation in soft rocks

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2009
    Marta Castelli
    Abstract This paper investigates the possibility of interpreting progressive shear failure in hard soils and soft rocks as the result of shear propagation of a pre-existing natural defect. This is done through the application of the principles of fracture mechanics, a slip-weakening model (SWM) being used to simulate the non-linear zone at the tips of the discontinuity. A numerical implementation of the SWM in a computation method based on the boundary element technique of the displacement discontinuity method (DDM) is presented. The crack and the non-linear zone at the advancing tip are represented through a set of elements, where the displacement discontinuity (DD) in the tangential direction is determined on the basis of a friction law. A residual friction angle is assumed on the crack elements. Shear resistance decreases on elements in the non-linear zone from a peak value at the tip, which is characteristic of intact material, to the residual value. The simulation of a uniaxial compressive test in plane strain conditions is carried out to exemplify the numerical methodology. The results emphasize the role played by the critical DD on the mechanical behaviour of the specimen. A validation of the model is shown through the back analysis of some experimental observations. The results of this back analysis show that a non-linear fracture mechanics approach seems very promising to simulate experimental results, in particular with regards to the shear band evolution pattern. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Simulation technique for wave generation

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2003
    S. Aliabadi
    Abstract In this paper, we present a new finite element technique for simulation of water waves impacting on floating structures. The emphasis will be on the numerical methods for water wave generation and propagation. In our approach, the governing equations are the Navier,Stokes equations written for two incompressible fluids. An interface function with two distinct values serves as a marker identifying the location of the free-surface. This function is transported throughout the computational domain with a time-dependent advection equation. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian,Eulerian domain. This allows us to handle the motion of the physical boundaries, such as the wave generator surface by moving the computational nodes. In the mesh-moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The numerical examples include 3D wave generation and wave breaking as they approach the coast, and the waves impacting on near-shore support columns. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Adaptive finite element computation of dielectric and mechanical intensity factors in piezoelectrics with impermeable cracks

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2010

    Abstract The paper deals with the application of an adaptive, hierarchic-iterative finite element technique to solve two-dimensional electromechanical boundary value problems with impermeable cracks in piezoelectric plates. In order to compute the dielectric and mechanical intensity factors, the interaction integral technique is used. The iterative finite element solver takes advantage of a sequence of solutions on hierarchic discretizations. Based on an a posteriori error estimation, the finite element mesh is locally refined or coarsened in each step. Two crack configurations are investigated in an infinite piezoelectric plate: A finite straight crack and a finite kinked crack. Fast convergence of the numerical intensity factors to the corresponding analytical solution is exemplarily proved during successive adaptive steps for the first configuration. Similar tendency can be observed for the second configuration. Furthermore, the computed intensity factors for the kinks are found to coincide well with the corresponding analytical values. In order to simulate the kinks spreading from a straight crack, the finite element mesh is modified automatically with a specially developed algorithm. This forms the basis for a fully adaptive simulation of crack propagation. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Modeling three-dimensional crack propagation,A comparison of crack path tracking strategies

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2008
    P. Jäger
    Abstract The development of a new finite element technique for the simulation of discontinuous failure phenomena in three dimensions is the key objective of this study. In contrast to the widely used extended finite element technique, we apply a purely deformation-based strategy based on an independent interpolation of the deformation field on both sides of the discontinuity. This method has been applied successfully for two-dimensional crack propagation problems in the past. However, when it comes to three-dimensional failure phenomena, it faces the same difficulties as the extended finite element method. Unlike in two dimensions, the characterization for the three-dimensional failure surface is non-unique and the tracking of the discrete crack can be performed in several conceptually different ways. In this work, we review the four most common three-dimensional crack tracking strategies. We perform a systematic comparison in terms of standard algorithmic quality measures such as mesh independency, efficiency, robustness, stability and computational cost. Moreover, we discuss more specific issues such as crack path continuity and integratability in commercial finite element packages. The features of the suggested crack tracking algorithms will be elaborated by means of characteristic benchmark problems in failure analysis. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2005
    Gen-Jin Dong
    Abstract Numerical analysis is carried out to investigate viscous flow over a travelling wavy plate undergoing lateral motion in the form of a streamwise travelling wave, which is similar to the backbone undulation of swimming fish. The two-dimensional incompressible Navier,Stokes equations are solved using the finite element technique with the deforming-spatial-domain/stabilized space,time formulation. The objective of this study is to elucidate hydrodynamic features of flow structure and vortex shedding near the travelling wavy plate and to get into physical insights to the understanding of fish-like swimming mechanisms in terms of drag reduction and optimal propulsive performance. The effects of some typical parameters, including the phase speed, amplitude, and relative wavelength of travelling wavy plate, on the flow structures, the forces, and the power consumption required for the propulsive motion of the plate are analysed. These results predicted by the present numerical analysis are well consistent with the available data obtained for the wave-like swimming motion of live fish in nature. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Study of a longitudinal flux permanent magnet linear generator for wave energy converters

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 14 2006
    O. Danielsson
    Abstract A directly coupled linear permanent magnet generator of longitudinal flux-type is investigated. The generator will be used for power take-off in a wave energy converter. A combined field- and circuit model, solved by a time stepping finite element technique, is used to model and analyse the electromagnetic behaviour of the machine. A large number of simulations form the basis of a design study where the influence of armature current level, number of cables per slot, and pole width is investigated with respect to efficiency, generator size, and the load angle. A case study is performed for a chosen generator design. The electromagnetic behaviour is examined both for nominal load and for overloads. The generator has a nominal output power of 10 kW for a constant piston speed of 0.7 ms,1. The electromagnetic efficiency at nominal load is 86.0%, the load angle 6.6°, and the power fluctuation 1.3%. At 300% overload the load angle barely exceeds 12° and the cable temperature is below 25°C provided that the stator back is thermally connected to the sea water. The numerical calculations have been verified for small speeds by experiments. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    THERMAL PROCESS EVALUATION OF RETORTABLE POUCHES FILLED WITH CONDUCTION HEATED FOOD

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2002
    MARCELO CRISTIANINI
    ABSTRACT Two models using the finite element technique (FE) and another using an analytical solution to solve the 3-dimensional heat conduction equation for a finite plate were built. FE models were built considering the actual pouch shape and retort temperature profile. Chi-square and regression lines were obtained for each set of temperatures generated by the models against experimental data. A mass average sterilizing value of 9.9 min was estimated when a critical point sterilizing value was at 8.7 min using the 3-Dimensional FE model. Close agreement was found among the three models for heating phase. Using actual retort temperature profile made FE models more accurate than the one using analytical solution, especially for cooling phase. [source]


    Natural Convection in Heat Generating Oval Porous Enclosures: A Non-Darcian Model

    THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2003
    Subrat Das
    Abstract This paper presents a series of numerical simulations dealing with the problem of natural convection flows and associated heat transfer in an enclosure filled with a fluid-saturated porous medium. The analysis is based on the finite element technique and incorporates the Brinkman-extended Darcy model for an oval enclosure. The numerical results obtained for a modified Rayleigh number, Ra, Darcy number, Da, offset, E, and eccentricity, e, are presented and discussed. The numerical predictions for a square enclosure compared well with published data. It is found that any increase in Da or Ra results in a higher fluid velocity that is responsible for shifting the core of the flow. Moreover, at higher ovality (E = 0.5), asymmetric flow is observed even at the lower range of Rayleigh number (Ra , 20), which may be attributed to the effect of curved isothermal wall. On présente dans cet article une série de simulations numériques des écoulements avec convection naturelle et du transfert de chaleur associé, dans une enceinte remplie d'un milieu poreux saturé en fluide. L'analyse repose sur la technique des éléments finis et fait appel à un modèle généralisé de Darcy-Brinkman pour une enceinte de forme ovale. Les résultats numériques obtenus pour le nombre de Rayleigh modifié, Ra, le nombre de Darcy, Da, le décentrement, E, et l'eccentricité, e, sont présentés et analysés. Les prédictions numériques pour une enceinte carrée se comparent bien aux données publiées. On trouve que toute augmentation de Da ou Ra entraîne une plus grande vitesse de fluide qui est responsable du déplacement du c,ur de l'écoulement. En outre, à une plus grande ovalité (E = 0,5), un écoulement asymétrique est observé même dans la gamme inférieure de nombre de Rayleigh (Ra" 20), ce qui peut être l'effet de la paroi isotherme courbée. [source]