Home About us Contact | |||
Elastoplastic Analysis (elastoplastic + analysis)
Selected AbstractsApplication of interface finite elements to three-dimensional progressive failure analysis of adhesive jointsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2003J. P. M. GONÇALVES ABSTRACT The paper presents a new model for three-dimensional progressive failure analysis of adhesive joints. The method uses interface elements and includes a damage model to simulate progressive debonding. The interface finite elements are placed between the adherents and the adhesive. The damage model is based on the indirect use of fracture mechanics and allows the simulation of the initiation and growth of damage at the interfaces without considering the presence of initial flaws. The application of the model to single lap joints is presented. Experimental tests were performed in aluminium/epoxy adhesive joints. Linear elastic and elastoplastic analyses were performed and the predicted failure load for the elastoplastic case agrees with experimental results. [source] Dynamics of unsaturated soils using various finite element formulationsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2009Nadarajah Ravichandran Abstract Unsaturated soils are three-phase porous media consisting of a solid skeleton, pore liquid, and pore gas. The coupled mathematical equations representing the dynamics of unsaturated soils can be derived based on the theory of mixtures. Solution of these fully coupled governing equations for unsaturated soils requires tremendous computational resources because three individual phases and interactions between them have to be taken into account. The fully coupled equations governing the dynamics of unsaturated soils are first presented and then two finite element formulations of the governing equations are presented and implemented within a finite element framework. The finite element implementation of all the terms in the governing equations results in the complete formulation and is solved for the first time in this paper. A computationally efficient reduced formulation is obtained by neglecting the relative accelerations and velocities of liquid and gas in the governing equations to investigate the effects of fluid flow in the overall behavior. These two formulations are used to simulate the behavior of an unsaturated silty soil embankment subjected to base shaking and compared with the results from another commonly used partially reduced formulation that neglects the relative accelerations, but takes into account the relative velocities. The stress,strain response of the solid skeleton is modeled as both elastic and elastoplastic in all three analyses. In the elastic analyses no permanent deformations are predicted and the displacements of the partially reduced formulation are in between those of the reduced and complete formulations. The frequency of vibration of the complete formulation in the elastic analysis is closer to the predominant frequency of the base motion and smaller than the frequencies of vibration of the other two analyses. Proper consideration of damping due to fluid flows in the complete formulation is the likely reason for this difference. Permanent deformations are predicted by all three formulations for the elastoplastic analyses. The complete formulation, however, predicts reductions in pore fluid pressures following strong shaking resulting in somewhat smaller displacements than the reduced formulation. The results from complete and reduced formulations are otherwise comparable for elastoplastic analyses. For the elastoplastic analysis, the partially reduced formulation leads to stiffer response than the other two formulations. The likely reason for this stiffer response in the elastoplastic analysis is the interpolation scheme (linear displacement and linear pore fluid pressures) used in the finite element implementation of the partially reduced formulation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Three-dimensional elastoplastic analysis by triple-reciprocity boundary element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2007Yoshihiro Ochiai Abstract In general, internal cells are required to solve elastoplastic problems using a conventional boundary element method (BEM). However, in this case, the merit of BEM, which is ease of data preparation, is lost. Triple-reciprocity BEM can be used to solve two-dimensional elastoplasticity problems with a small plastic deformation. In this study, it is shown that three-dimensional elastoplastic problems can be solved, without the use of internal cells, by the triple-reciprocity BEM. An initial strain formulation is adopted and the initial strain distribution is interpolated using boundary integral equations. A new computer program was developed and applied to solving several problems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Numerical and experimental investigation of the deformational behaviour of plastic containersPACKAGING TECHNOLOGY AND SCIENCE, Issue 5 2001D. Karalekas Abstract A numerical and experimental study was undertaken to investigate the deformational behaviour of a plastic grooved container used to store agrochemical solutions when loaded under columnar crush conditions. Finite element analysis was implemented to calculate stresses and deformations at various critical points of the container. A non-linear elastoplastic analysis was performed, based on the ABAQUS FEM computer program. The results of the stress analysis were coupled with a yield criterion to predict the initiation of plastic deformation. The numerically obtained results are compared to those obtained experimentally. It was found that the numerically calculated strains at predetermined locations of the plastic container were in good agreement with the experimentally measured ones. Copyright © 2001 John Wiley & Sons, Ltd. [source] |