Home About us Contact | |||
Elastomeric Stamps (elastomeric + stamp)
Selected AbstractsSoft-Contact Optical Lithography Using Transparent Elastomeric Stamps and Application to Nanopatterned Organic Light-Emitting DevicesADVANCED FUNCTIONAL MATERIALS, Issue 9 2005T.-W. Lee Abstract Conventional photolithography uses rigid photomasks of fused quartz and high-purity silica glass plates covered with patterned microstructures of an opaque material. We introduce new, transparent, elastomeric molds (or stamps) of poly(dimethylsiloxane) (PDMS) that can be employed as photomasks to produce the same resist pattern as the pattern of the recessed (or non-contact) regions of the stamps, in contrast to other reports in the literature[1] of using PDMS masks to generate edge patterns. The exposure dose of the non-contact regions with the photoresist through the PDMS is lower than that of the contact regions. Therefore, we employ a difference in the effective exposure dose between the contact and the non-contact regions through the PDMS stamp to generate the same pattern as the PDMS photomask. The photomasking capability of the PDMS stamps, which is similar to rigid photomasks in conventional photolithography, widens the application boundaries of soft-contact optical lithography and makes the photolithography process and equipment very simple. This soft-contact optical lithography process can be widely used to perform photolithography on flexible substrates, avoiding metal or resist cracks, as it uses soft, conformable, intimate contact with the photoresist without any external pressure. To this end, we demonstrate soft-contact optical lithography on a gold-coated PDMS substrate and utilized the patterned Au/PDMS substrate with feature sizes into the nanometer regime as a top electrode in organic light-emitting diodes that are formed by soft-contact lamination. [source] Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing,ADVANCED FUNCTIONAL MATERIALS, Issue 2 2003H. Schmid Abstract The formation of permanent or reversible metallic patterns on a substrate has applications in microfabrication and analytical techniques. Here, we investigate how to metallize an elastomeric stamp, either for processing of a substrate mediated by the proximity between the metal on the stamp and an active layer on the substrate, or for contact printing of the metal from a stamp to a substrate. The stamps were made from poly(dimethylsiloxane) (PDMS) and were modified before metallizing them with Au by adding to or removing from their bulk mobile silicone residues, by oxidizing their surface with an O2 -plasma, by surface-fluorination via silanization, or by priming them with a Ti layer. The interplay between the adhesion of the different layers defines two categories of application: contact processing and contact printing. Contact processing corresponds to keeping the metal on the stamp after contacting a substrate; it is reversible and nondestructive, and useful to define transient electrical contacts or quench fluorescence on a surface, for example. Contact printing occurs when the metal on the stamp adheres to the printed surface. Contact printing can transfer a metal, layers of metals, or an oxide onto a substrate with submicrometer lateral resolution. The transfer can be total or localized to the regions of contact, depending on the morphology of the metal on the stamp and/or the surface chemistry of the substrate. [source] Nanofacet Lithography: A New Bottom-Up Approach to Nanopatterning and Nanofabrication by Soft Replication of Spontaneously Faceted Crystal Surfaces,ADVANCED MATERIALS, Issue 10 2007R. Gabai The faceting of unstable crystal surfaces provides self-assembling templates for soft lithography, enabling the facile generation of a variety of periodic nanopatterned monolayers, nanowires, nanogrooves, nanogrids, and nanowaffles of Au and Si (the figure shows the replication of faceted sapphire to an elastomeric stamp, and then to a patterned self-assembled monolayer). [source] Detachment Lithography of Photosensitive Polymers: A Route to Fabricating Three-Dimensional StructuresADVANCED FUNCTIONAL MATERIALS, Issue 2 2010Junghoon Yeom Abstract A technique to create arrays of micrometer-sized patterns of photosensitive polymers on the surface of elastomeric stamps and to transfer these patterns to planar and nonplanar substrates is presented. The photosensitive polymers are initially patterned through detachment lithography (DL), which utilizes the difference in adhesion forces to induce the mechanical failure in the film along the edges of the protruded parts of the mold. A polydimethylsiloxane (PDMS) stamp with a kinetically and thermally adjustable adhesion and conformal contact can transfer the detached patterns to etched or curved substrates, as well as planar ones. These printed patterns remain photochemically active for further modification via photolithography, and/or can serve as resists for subsequent etching or deposition, such that photolithography can be used on highly nonconformal and nonplanar surfaces. Various 3D structures fabricated using the process have potential applications in MEMS (micro-electromechanical systems) sensors/actuators, optical devices, and microfluidics. [source] |