Home About us Contact | |||
Elastin Content (elastin + content)
Selected AbstractsLOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expressionEXPERIMENTAL DERMATOLOGY, Issue 8 2006Valérie Cenizo Abstract:, The lysyl oxidases lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are responsible for elastin cross-linking. It was shown recently that LOXL is essential for the elastic fibres homeostasis and for their maintenance at adult age. We first determined whether or not elastin, LOX and LOXL are less expressed during adulthood. The LOX and LOXL mRNA level, quantified by real-time reverse transcriptase-polymerase chain reaction decreased in adult skin fibroblasts compared with fibroblasts from children. In contrast, the elastin mRNA level remains stable at all ages. The goal of this study was to induce elastogenesis at the adult age. Therefore, both enzymes, and in particular LOXL, of which expression is the most affected by age, could be targeted to induce elastogenesis in adult skin. We screened a library of about 1000 active ingredients to find activators capable to stimulate specifically the LOXL gene expression in adult dermal fibroblasts. The positive effect of selected active ingredients was confirmed on fibroblasts grown on monolayers and on dermal and skin equivalent cultures. One extract, obtained from dill (LYS'LASTINE V, Engelhard, Lyon, France), stimulates the LOXL gene expression in dermal equivalents (+64% increase in the LOXL mRNA level when compared with control). At the same time, the elastin detection is increased in dermal equivalents and under the dermal,epidermal junction of skin equivalents, without increase of the elastin mRNA. In conclusion, LOXL can be considered as a new target to reinduce elastogenesis. Its stimulation by a dill extract is correlated with increased elastin detection, suggesting an increase in elastogenesis efficiency. [source] Enhanced survival of vascular smooth muscle cells accounts for heightened elastin deposition in arteries of neonatal spontaneously hypertensive ratsEXPERIMENTAL PHYSIOLOGY, Issue 4 2010Silvia M. Arribas Abnormal stiffening and narrowing of arteries are characteristic features of spontaneously hypertensive rats (SHR). In this strain, we have previously demonstrated an increased elastin content and abnormal organization of lamellae in conduit and resistance arteries from neonatal rats that preceded the impending inward remodelling, increased vascular stiffness and development of hypertension. The aim of this study was to assess the mechanism responsible for such excessive and aberrant elastin deposition in SHR vessels during perinatal development. We compared elastin, collagen and fibronectin production (inmunocytochemistry and quantitative assay of metabolically labelled insoluble elastin), DNA content as well as cell proliferation (proliferative cellular nuclear antigen, bromodeoxyuridine incorporation) and death rates (propidium iodide exclusion test, terminal transferase nick and labeling (TUNEL) assay) in cultures of vascular smooth muscle cells (VSMC) derived from neonatal SHR and Wistar,Kyoto (WKY) control rats. Cultures of VSMC derived from neonatal SHR exhibited hypertrophy, produced more elastin, collagen and fibronectin and contained more DNA than equally plated WKY counterparts. Further analysis revealed that the higher net DNA content in SHR-derived cultures was due to increased diploidy, but not to a heightened cell multiplication. The SHR-derived VSMC also exhibited lower rates of cell death and apoptosis, which were associated with increased levels of the anti-apoptotic protein, survivin. We therefore conclude that the peculiar heightened survival of matrix-producing VSMC in neonatal SHR is responsible for accumulation of hard-wearing elastin and other extracellular matrix elements in the growing arteries, thereby contributing to the subsequent development of systemic hypertension. [source] Involvement of Reactive Oxygen Species in TGF-,1-induced Tropoelastin Expression by Human Dermal FibroblastsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2009Won Seon Choi Chronic exposure to solar UV radiation causes marked changes in the dermal extracellular matrix that underlie the loss of resiliency and increased laxity observed in photoaged skin. In particular, the dermal elastin content increases substantially and the normal, well-organized elastic fibers are replaced by amorphous elastotic material. Transforming growth factor-,1 (TGF-,1) stimulates synthesis of elastin by dermal fibroblasts and may mediate the increase in elastin in chronically photodamaged skin. We investigated pathways involved in the TGF,,1-induced increase in tropoelastin (TE), the soluble elastin monomer and assessed the role of reactive oxygen species (ROS) in the regulation of TE mRNA. Antioxidants and an inhibitor of NADPH oxidase blocked TGF,,1-induced TE mRNA increase even when added 1.5 h after TGF-,1, although ROS were detected for only 30 min. The TE mRNA increase required activation of Smad4, shown using Smad4 siRNA, and also involved the ERK1/2, p38 and JNK MAP kinases but not PI3K. ROS did not enhance signaling through Smad2 but did enhance activation of p38 and ERK1/2 at 10 min after TGF-,1. These results indicate that Smad and MAPK pathways mediate TGF,,1-induced TE expression and that ROS are required for both early signal transduction and later steps that increase elastin. [source] In Vivo Optical Analysis of Quantitative Changes in Collagen and Elastin During Arterial Remodeling,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Alexander Christov ABSTRACT Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P < 0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (P, 0.013). Excellent correlations for FEI with elastin and collagen I, III and IV content measured by IH (R2, 0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2, 0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites. [source] |