Elastic Stiffness (elastic + stiffness)

Distribution by Scientific Domains


Selected Abstracts


Initial stiffness of reinforced concrete structural walls with irregular openings

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2010
Bing Li
Abstract Reinforced concrete (RC) structural walls with openings are the primary lateral-load-carrying elements utilized in many structures designed to resist earthquakes. A review of the technical literature shows that there is a considerable amount of uncertainty with regards to the elastic stiffness of these structures when subjected to seismic excitations. Current design practices often employ a stiffness reduction factor to deal with this uncertainty. In an attempt to develop additional information regarding the stiffness of these structures, this paper discusses an approach to determine the initial stiffness of RC structural walls with irregular openings and low aspect ratios. This approach would consider the effect of both flexural and shear deformations. As a part of this study, an analytical approach to determine stiffness was also developed and validated by comparing theoretical and experimental results obtained from six RC shear walls with irregular openings. Simple equations for assessing initial stiffness of RC structural walls with irregular openings are then proposed, based on these parametric case studies. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Seismic performance and new design procedure for chevron-braced frames

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2006
Edoardo M. Marino
Abstract The paper is concerned with the seismic design of steel-braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade-off between the strength and ductility, is set at 2.5 for chevron-braced frames, while 6.5 is assigned for most ductile steel moment-resisting frames. Strength deterioration in post-buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron-braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post-buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter-storey drift. The q values adequate for the chevron-braced frames are examined in reference to the maximum inter-storey drifts sustained by most ductile moment-resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross-sections for the braces compared to the cross-sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Test on full-scale three-storey steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behaviour

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 1 2006
Masayoshi Nakashima
Abstract A test on a full-scale model of a three-storey steel moment frame was conducted, with the objectives of acquiring real information about the damage and serious strength deterioration of a steel moment frame under cyclic loading, studying the interaction between the structural frame and non-structural elements, and examining the capacity of numerical analyses commonly used in seismic design to trace the real cyclic behaviour. The outline of the test structure and test program is presented, results on the overall behaviour are given, and correlation between the experimental results and the results of pre-test and post-test numerical analyses is discussed. Pushover analyses conducted prior to the test predicted the elastic stiffness and yield strength very reasonably. With proper adjustment of strain hardening after yielding and composite action, numerical analyses were able to accurately duplicate the cyclic behaviour of the test structure up to a drift angle of 1/25. The analyses could not trace the cyclic behaviour involving larger drifts in which serious strength deterioration occurred due to fracture of beams and anchor bolts and progress of column local buckling. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Numerical simulation of viscous flow interaction with an elastic membrane

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2008
Lisa A. Matthews
Abstract A numerical fluid,structure interaction model is developed for the analysis of viscous flow over elastic membrane structures. The Navier,Stokes equations are discretized on a moving body-fitted unstructured triangular grid using the finite volume method, taking into account grid non-orthogonality, and implementing the SIMPLE algorithm for pressure solution, power law implicit differencing and Rhie,Chow explicit mass flux interpolations. The membrane is discretized as a set of links that coincide with a subset of the fluid mesh edges. A new model is introduced to distribute local and global elastic effects to aid stability of the structure model and damping effects are also included. A pseudo-structural approach using a balance of mesh edge spring tensions and cell internal pressures controls the motion of fluid mesh nodes based on the displacements of the membrane. Following initial validation, the model is applied to the case of a two-dimensional membrane pinned at both ends at an angle of attack of 4° to the oncoming flow, at a Reynolds number based on the chord length of 4 × 103. A series of tests on membranes of different elastic stiffness investigates their unsteady movements over time. The membranes of higher elastic stiffness adopt a stable equilibrium shape, while the membrane of lowest elastic stiffness demonstrates unstable interactions between its inflated shape and the resulting unsteady wake. These unstable effects are shown to be significantly magnified by the flexible nature of the membrane compared with a rigid surface of the same average shape. Copyright © 2007 John Wiley & Sons, Ltd. [source]


On Toughness and Stiffness of Poly(butylene terephthalate) with Epoxide-Containing Elastomer by Reactive Extrusion

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 8 2004
Zhong-Zhen Yu
Abstract Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra-functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E-MA-GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E-MA-GMA and the effect of the epoxy monomer were investigated. It was found that E-MA-GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E-MA-GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E-MA-GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact-fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.-% or more elastomer. SEM micrographs of freeze-fractured surfaces of PBT/E-MA-GMA blend illustrating the finer dispersion of E-MA-GMA in the presence of epoxy monomer. [source]


Reliability of dynamometric passive properties of the pelvic floor muscles in postmenopausal women with stress urinary incontinence

NEUROUROLOGY AND URODYNAMICS, Issue 8 2008
Mélanie Morin
Abstract The passive properties of the pelvic floor muscles (PFM) might play a role in stress urinary incontinence (SUI) pathophysiology. Aim To investigate the test,retest reliability of the dynamometric passive properties of the PFM in postmenopausal SUI women. Methods Thirty-two SUI postmenopausal women were convened to two sessions 2 weeks apart. In each session, the measurements were repeated twice. The pelvic floor musculature was evaluated in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) five lengthening and shortening cycles (Forces and passive elastic stiffness (PES) were evaluated at different vaginal apertures. Hysteresis was also calculated.); (4) Percentage of passive resistance loss after 1 min of sustained stretching was computed. The generalizability theory was used to calculate two reliability estimates, the dependability indices (,) and the standard error of measurement (SEM), for one session involving one measurement or the mean of two measurements. Results Overall, the reliability of the passive properties was good with indices of dependability of 0.75,0.93. The SEMs for forces and PES were 0.24,0.67 N and 0.03,0.10 N/mm, respectively, for mean, maximal and 20-mm apertures, representing an error between 13% and 23%. Passive forces at minimal aperture showed lower reliability (,,=,0.51,0.57) compared with other vaginal openings. The aperture at a common force of 0.5 N was the only parameter demonstrating a poor reliability (,,=,0.35). Conclusion This new approach for assessing PFM passive properties showed enough reliability for highly recommending its inclusion in the PFM assessment of SUI postmenopausal women. Neurourol. Urodynam. 27:819,825, 2008, © 2008 Wiley-Liss, Inc. [source]


Magnetoelectric laminate based DC magnetic field sensor

PHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 3 2008
Makarand Karmarkar
Abstract We report on a DC magnetic field sensor that utilizes magnetoelectric (ME) laminate composites. It consists of a ring-dot piezoelectric transformer laminated to a magnetostrictive disc. When a constant voltage is applied to the ring section of the piezoelectric layer at resonance, a stress is induced in the dot section. Then, if an external magnetic object is introduced in the vicinity of the dot section, the effective elastic stiffness is increased, altering the resonance frequency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Regional, ontogenetic, and sex-related variations in elastic properties of cortical bone in baboon mandibles

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Qian Wang
Abstract Understanding the mechanical features of cortical bone and their changes with growth and adaptation to function plays an important role in our ability to interpret the morphology and evolution of craniofacial skeletons. We assessed the elastic properties of cortical bone of juvenile and adult baboon mandibles using ultrasonic techniques. Results showed that, overall, cortical bone from baboon mandibles could be modeled as an orthotropic elastic solid. There were significant differences in the directions of maximum stiffness, thickness, density, and elastic stiffness among different functional areas, indicating regional adaptations. After maturity, the cortical bone becomes thicker, denser, and stiffer, but less anisotropic. There were differences in elastic properties of the corpus and ramus between male and female mandibles which are not observed in human mandibles. There were correlations between cortical thicknesses and densities, between bone elastic properties and microstructural configuration, and between the directions of maximum stiffness and bone anatomical axes in some areas. The relationships between bone extrinsic and intrinsic properties bring us insights into the integration of form and function in craniofacial skeletons and suggest that we need to consider both macroscopic form, microstructural variation, and the material properties of bone matrix when studying the functional properties and adaptive nature of the craniofacial skeleton in primates. The differences between baboon and human mandibles is at variance to the pattern of differences in crania, suggesting differences in bone adaption to varying skeletal geometries and loading regimes at both phylogenetic and ontogenetic levels. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Elastic properties of two-dimensional quasicrystals

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 4 2008
Hans Grimmer
Quasicrystals (QC) with two-dimensional quasiperiodic and one-dimensional periodic structure are considered. Their symmetry can be described by embedding the three-dimensional physical space VE in a five-dimensional superspace V, which is the direct sum of VE and a two-dimensional internal space VI. A displacement v in V can be written as v = u + w, where u,VE and w ,VI. If the QC has a point group P in VE that is crystallographic, it is assumed that w and a vector u,,VE lying in the plane in which the crystal is quasiperiodic transform under equivalent representations of P, inequivalent ones if the point group is 5-, 8-, 10- or 12-gonal. From the Neumann principle follow restrictions on the form of the phonon, phason and phonon,phason coupling contributions to the elastic stiffness matrix that can be determined by combining the restrictions obtained for a set of elements generating the point group of interest. For the phonon part, the restrictions obtained for the generating elements do not depend on the system to which the point group belongs. This remains true for the phason and coupling parts in the case of crystallographic point groups but, in general, breaks down for the non-crystallographic ones. The form of the symmetric 12 × 12 matrix giving the phonon, phason and phonon,phason coupling contributions to the elastic stiffness is presented in graphic notation. [source]


Seismic performance and new design procedure for chevron-braced frames

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2006
Edoardo M. Marino
Abstract The paper is concerned with the seismic design of steel-braced frames in which the braces are configured in a chevron pattern. According to EuroCode 8 (EC8), the behaviour factor q, which allows for the trade-off between the strength and ductility, is set at 2.5 for chevron-braced frames, while 6.5 is assigned for most ductile steel moment-resisting frames. Strength deterioration in post-buckling regime varies with the brace's slenderness, but EC8 adopts a unique q value irrespective of the brace slenderness. The study focuses on reevaluation of the q value adequate for the seismic design of chevron-braced frames. The present EC8 method for the calculation of brace strength supplies significantly different elastic stiffnesses and actual strengths for different values of brace slenderness. A new method to estimate the strength of a chevron brace pair is proposed, in which the yield strength (for the brace in tension) and the post-buckling strength (for the brace in compression) are considered. The new method ensures an identical elastic stiffness and a similar strength regardless of the brace slenderness. The advantage of the proposed method over the conventional EC8 method is demonstrated for the capacity of the proposed method to control the maximum inter-storey drift. The q values adequate for the chevron-braced frames are examined in reference to the maximum inter-storey drifts sustained by most ductile moment-resisting frames. When the proposed method is employed for strength calculation, the q value of 3.5 is found to be reasonable. It is notable that the proposed method does not require larger cross-sections for the braces compared to the cross-sections required for the present EC8 method. Copyright © 2005 John Wiley & Sons, Ltd. [source]