Home About us Contact | |||
Effector System (effector + system)
Selected AbstractsModulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): evidence for terminal investment and dishonestyJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2006B. SADD Abstract Organisms partition resources into life-history traits in order to maximise fitness over their expected lifespan. For the males of many species fitness is determined by qualitative and quantitative aspects of costly sexual signals: The notion that epigamic traits are costly forms the cornerstone of those theories that propose parasites drive sexual selection. Consequently studies examining this notion assume sexual signalling is honest (i.e. driven by cost) when they seek to identify correlations or causal links between male immune function and attractiveness. We demonstrate that immune challenged males of the mealworm beetle, Tenebrio molitor, increased their investment in epigamic pheromone signals: these males became significantly more attractive to females whilst increasing the activity of a key immune effector system. In other words males increase terminal reproductive effort (invest in attractiveness) in response to a survival threat (immune insult). Consequently the signal preferred by the female is dishonest when considering the male's condition. [source] Acutely administered melatonin decreases somatostatin-binding sites and the inhibitory effect of somatostatin on adenylyl cyclase activity in the rat hippocampusJOURNAL OF PINEAL RESEARCH, Issue 2 2004Rosa Marķa Izquierdo-Claros Abstract:, Melatonin is known to increase neuronal activity in the hippocampus, an effect contrary to that of somatostatin (somatotropin release-inhibiting factor, SRIF). Thus, the aim of this study was to investigate whether the somatostatinergic system is implicated in the mechanism of action of melatonin in the rat hippocampus. One group of rats was injected a single dose of melatonin [25 ,g/kg subcutaneously (s.c.)] or saline containing ethanol (0.5%, s.c.) and killed 5 hr later. Melatonin significantly decreased the SRIF-like immunoreactivity levels and induced a significant decrease in the density of SRIF receptors as well as in the dissociation constant (Kd). SRIF-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase activity was markedly decreased in hippocampal membranes from melatonin-treated rats. The functional activity of Gi proteins was similar in hippocampal membranes from melatonin-treated and control rats. Western blot analyses revealed that melatonin administration did not alter Gi,1 or Gi,2 levels. To determine if the changes observed were related to melatonin-induced activation of central melatonin receptors, a melatonin receptor antagonist, luzindole, was administered prior to melatonin injection. Pretreatment with luzindole (10 mg/kg, s.c.) did not alter the melatonin-induced effects on the above-mentioned parameters and luzindole, alone, had no observable effect. The present results demonstrate that melatonin decreases the activity of the SRIF receptor,effector system in the rat hippocampus, an effect which is apparently not mediated by melatonin receptors. As SRIF exerts an opposite effect to that of melatonin on hippocampal neuronal activity, it is possible that the SRIFergic system could be implicated in the mechanism of action of melatonin in the rat. [source] Design and engineering human forms of monoclonal antibodiesDRUG DEVELOPMENT RESEARCH, Issue 3 2004Manuel L. Penichet Abstract The antibody molecule has multiple properties that make it a key component of the immune response. These include its ability to recognize a vast array of different foreign substrates and to interact with and activate the host effector systems. Antibodies with defined specificities may serve as "magic bullets" for the diagnosis and therapy of multiple diseases. With the development of the hybridoma technology, it was possible to produce rodent (mouse or rat) monoclonal antibodies that are the product of a single clone of antibody producing cells and have only one antigen binding specificity. However, the therapeutic use of rodent monoclonals antibodies in humans is limited by their immunogenicity, short circulating half-life, and inability to efficiently trigger human effector mechanisms. However, it proved difficult to produce human monoclonal antibodies using the same methods. To address these problems genetic engineering and expression systems have instead been used to produce chimeric, humanized, and totally human antibodies as well as antibodies with novel structures and functional properties. In addition, the use of yeast and human artificial chromosome vectors for animal transgenesis has allowed the development of animal models that produce antigen specific antibodies that are totally human. As a consequence, recombinant antibody-based therapies are now used to treat a variety of clinical conditions including infectious diseases, inflammatory disorders, and cancer. This article summarizes and compares different strategies for designing and engineering human antibodies and their derivatives. Drug Dev. Res. 61:121,136, 2004. © 2004 Wiley-Liss, Inc. [source] Effects of subchronic and chronic melatonin treatment on somatostatin binding and its effects on adenylyl cyclase activity in the rat frontoparietal cortexJOURNAL OF PINEAL RESEARCH, Issue 4 2002Rosa Marķa Izquierdo-Claros Abstract: Melatonin and somatostatin are known to exert similar effects on locomotor activity. We have previously demonstrated that acute melatonin treatment regulates somatostatin receptor function in the rat frontoparietal cortex. However, the effects of subchronic and chronic melatonin treatment on the somatostatin receptor-G protein,adenylyl cyclase system in the rat frontoparietal cortex are unknown. Melatonin was administered subcutaneously at a daily dose of 25 ,g/kg for 4 days, 1 wk or 2 wk. Twenty-four hours after the last injection, the animals were sacrificed. Melatonin did not alter the somatostatin-like immunoreactivity content in the frontoparietal cortex from control and melatonin-treated rats during any of the previously indicated periods. Four days of melatonin administration induced both an increase in the number of [125I]-Tyr11 -somatostatin receptors and a decrease in the affinity of somatostatin for its receptors in frontoparietal cortical membranes. The increased number of somatostatin receptors in the melatonin-treated rats was associated with an increased capacity of somatostatin to inhibit basal and forskolin-stimulated adenylyl cyclase activity. Melatonin administration for 4 days induced a higher adenylyl cyclase activity both under basal conditions and after direct stimulation of the enzyme with forskolin. No significant differences were observed in the function of Gi proteins in the 4-day melatonin-treated rats. Western blot analyses showed that the 4-day melatonin treatment reduced Gi,2 levels, without altering the amount of Gi,1. These melatonin-induced changes reverted to control values after 7 or 14 days of treatment. Altogether, the present findings suggest that subchronic melatonin treatment modulates the somatostatin receptor/effector system in the rat frontoparietal cortex. [source] |