Home About us Contact | |||
Effector Proteins (effector + protein)
Kinds of Effector Proteins Selected AbstractsThe Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key HypothesisHELICOBACTER, Issue 3 2010Steffen Backert Abstract Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ,master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon. [source] Pathogen trafficking pathways and host phosphoinositide metabolismMOLECULAR MICROBIOLOGY, Issue 6 2009Stefan S. Weber Summary Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells. [source] VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciensMOLECULAR MICROBIOLOGY, Issue 6 2003Krishnamohan Atmakuri Summary Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens , a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) , and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2 -terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB -encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector,coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. [source] Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cellMOLECULAR MICROBIOLOGY, Issue 1 2002Boris Szurek Summary Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell. [source] Folding kinetics and thermodynamics of Pseudomonas syringae effector protein AvrPto provide insight into translocation via the type III secretion systemPROTEIN SCIENCE, Issue 7 2008Jennifer E. Dawson Abstract In order to infect their hosts, many Gram-negative bacteria translocate agents of infection, called effector proteins, through the type III secretion system (TTSS) into the host cytoplasm. This process is thought to require at least partial unfolding of these agents, raising the question of how an effector protein might unfold to enable its translocation and then refold once it reaches the host cytoplasm. AvrPto is a well-studied effector protein of Pseudomonas syringae pv tomato. The presence of a readily observed unfolded population of AvrPto in aqueous solution and the lack of a known secretion chaperone make it ideal for studying the kinetic and thermodynamic characteristics that facilitate translocation. Application of Nzz exchange spectroscopy revealed a global, two-state folding equilibrium with 16% unfolded population, a folding rate of 1.8 s,1, and an unfolding rate of 0.33 s,1 at pH 6.1. TrAvrPto stability increases with increasing pH, with only 2% unfolded population observed at pH 7.0. The R1 relaxation of TrAvrPto, which is sensitive to both the global anisotropy of folded TrAvrPto and slow exchange between folded and unfolded conformations, provided independent verification of the global kinetic rate constants. Given the acidic apoplast in which the pathogen resides and the more basic host cytoplasm, these results offer an intriguing mechanism by which the pH dependence of stability and slow folding kinetics of AvrPto would allow efficient translocation of the unfolded form through the TTSS and refolding into its functional folded form once inside the host. [source] A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell deathTHE PLANT JOURNAL, Issue 3 2010Brendan S. Kelley Summary Evasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr,R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy. [source] The Pseudomonas syringae effector protein, AvrRPS4, requires in planta processing and the KRVY domain to functionTHE PLANT JOURNAL, Issue 6 2009Kee Hoon Sohn Summary A Pseudomonas syringae pv. pisi effector protein, AvrRPS4, triggers RPS4 -dependent immunity in Arabidopsis. We characterized biochemical and genetic aspects of AvrRPS4 function. Secretion of AvrRPS4 from Pst DC3000 is type III secretion-dependent, and AvrRPS4 is processed into a smaller form in plant cells but not in bacteria or yeast. Agrobacterium -mediated transient expression analysis of N-terminally truncated AvrRPS4 mutants revealed that the C-terminal 88 amino acids are sufficient to trigger the hypersensitive response in turnip. N-terminal sequencing of the processed AvrRPS4 showed that processing occurs between G133 and G134. The processing-deficient mutant, R112L, still triggers RPS4 -dependent immunity, suggesting that the processing is not required for the AvrRPS4 avirulence function. AvrRPS4 enhances bacterial growth when delivered by Pta 6606 into Nicotiana benthamiana in which AvrRPS4 is not recognized. Transgenic expression of AvrRPS4 in the Arabidopsis rps4 mutant enhances the growth of Pst DC3000 and suppresses PTI (PAMP-triggered immunity), showing that AvrRPS4 promotes virulence in two distinct host plants. Furthermore, full virulence activity of AvrRPS4 requires both proteolytic processing and the KRVY motif at the N-terminus of processed AvrRPS4. XopO, an Xcv effector, shares the amino acids required for AvrRPS4 processing and the KRVY motif. XopO is also processed into a smaller form in N. benthamiana, similar to AvrRPS4, suggesting that a common mechanism is involved in activation of the virulence activities of both AvrRPS4 and XopO. [source] The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamianaTHE PLANT JOURNAL, Issue 6 2005Matthew Metz Summary Nicotiana benthamiana leaves display a visible plant cell death response when infiltrated with a high titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). This visual phenotype was used to identify overlapping cosmid clones from a genomic cosmid library constructed from the Xcv strain, GM98-38. Individual cosmid clones from the Xcv library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an altered visual high titer inoculation response in N. benthamiana. The molecular characterization of the cosmid clones revealed that they contained a novel gene, xopX, that encodes a 74-kDa type III secretion system (TTSS) effector protein. Agrobacterium -mediated transient expression of XopX in N. benthamiana did not elicit the plant cell death response although detectable XopX protein was produced. Interestingly, the plant cell death response occurred when the xopX Agrobacterium -mediated transient expression construct was co-inoculated with strains of either Xcv,xopX or Xcc, both lacking xopX. The co-inoculation complementation of the plant cell death response also depends on whether the Xanthomonas strains contain an active TTSS. Transgenic 35S- xopX -expressing N. benthamiana plants also have the visible plant cell death response when inoculated with the non- xopX -expressing strains Xcv,xopX and Xcc. Unexpectedly, transgenic 35S- xopX N. benthamiana plants displayed enhanced susceptibility to bacterial growth of Xcc as well as other non- xopX -expressing Xanthomonas and Pseudomonas strains. This result is also consistent with the increase in bacterial growth on wild type N. benthamiana plants observed for Xcc when XopX is expressed in trans. Furthermore, XopX contributes to the virulence of Xcv on host pepper (Capsicum annuum) and tomato (Lycopersicum esculentum) plants. We propose that the XopX bacterial effector protein targets basic innate immunity in plants, resulting in enhanced plant disease susceptibility. [source] Crystallization and preliminary crystallographic analysis of the ADP-ribosyltransferase HopU1ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2010Yan Lin Several Gram-negative pathogens of plants and animals and some eukaryotic associated bacteria use type III protein-secretion systems (T3SSs) to deliver bacterial virulence-associated `effector' proteins directly into host cells. HopU1 is a type III effector protein from the plant pathogen Pseudomonas syringae, which causes plant bacterial speck disease. HopU1 quells host immunity through ADP-ribosylation of GRP7 as a substrate. HopU1 has been reported as the first ADP-ribosyltransferase virulence protein to be identified in a plant pathogen. Although several structures of ADP-ribosyltransferases have been determined to date, no structure of an ADP-ribosyltransferase from a plant pathogen has been determined. Here, the protein expression, purification, crystallization and preliminary crystallographic analysis of HopU1 are reported. Diffracting crystals were grown by hanging-drop vapour diffusion using polyethylene glycol 10,000 as a precipitant. Native and SAD data sets were collected using native and selenomethionine-derivative HopU1 crystals. The diffraction pattern of the crystal extended to 2.7,Å resolution using synchrotron radiation. The crystals belonged to space group P43, with unit-cell parameters a = 92.6, b = 92.6, c = 101.6,Å. [source] Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFU -mediated actin assembly and harbours N-terminal sequences that influence pedestal lengthCELLULAR MICROBIOLOGY, Issue 9 2006Kenneth G. Campellone Summary Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) both utilize type III secretion systems that translocate the effector protein Tir into the plasma membrane of mammalian cells in order to stimulate localized actin assembly into ,pedestals'. The Tir molecule that EPEC delivers is phosphorylated within its C-terminus on tyrosine-474, and a clustered 12-residue phosphopeptide encompassing this residue initiates an efficient signalling cascade that triggers actin polymerization. In addition to Y474, tyrosine-454 of EPEC Tir is phosphorylated, although inefficiently, and promotes actin polymerization at low levels. In contrast to EPEC Tir, EHEC Tir lacks Y474 and triggers pedestal formation in a phosphotyrosine-independent manner by interacting with an additional effector protein, EspFU. To identify EHEC Tir sequences that regulate localized actin assembly, we circumvented the strict requirements for type III translocation and directly expressed Tir derivatives in mammalian cells by transfection. Infection of Tir-expressing cells with a Tir-deficient EHEC strain demonstrated that ectopically expressed Tir localizes to the plasma membrane, is modified by mammalian serine-threonine kinases and is fully functional for actin pedestal formation. Removal of portions of the cytoplasmic N-terminus of Tir resulted in the generation of abnormally long pedestals, indicating that this region of EHEC Tir influences pedestal length. In the presence of the entire N-terminal domain, a 12-residue peptide from the C-terminus of EHEC Tir is both necessary and sufficient to recruit EspFU and initiate actin pedestal formation. This peptide encompasses the portion of EHEC Tir analogous to the EPEC Tir-Y454 region and is present within the Tir molecules of all pedestal-forming bacteria, suggesting that this sequence harbours a conserved signalling function. [source] c-Src kinase activation regulates preprotachykinin gene expression and substance P secretion in rat sensory gangliaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003Orisa J. Igwe Abstract Increased synthesis of substance P (SP) in the dorsal root ganglia (DRG) and enhanced axonal transport to and secretion from the primary afferent sensory neurons might enhance pain signalling in the spinal dorsal horn by modifying pronociceptive pathways. IL-1, increases SP synthesis by enhancing the expression of preprotachykinin (PPT) mRNA encoding for SP and other tachykinins in the DRG. Stimulation of IL-1 receptor by IL-1, may induce the phosphorylation of tyrosine residues in many effector proteins through the activation of p60c-src kinase. The hypothesis that the synthesis of SP in and secretion from the primary sensory ganglia are regulated by the activation of p60c-src kinase induced by IL-1, was tested. Pretreatment of DRG neurons in culture with herbimycin A, genistein or PP2, three structurally different nonreceptor tyrosine kinase inhibitors that act by different mechanisms, decreased the kinase activity of p60c-src induced by the activation of IL-1 receptor. PP3, a negative control for the Src family of tyrosine kinase inhibitor PP2 had no effect. Herbimycin A and genistein also decreased IL-1,-induced expression of PPT mRNA-encoding transcripts and the levels of SP-li synthesized in the cells and secreted into the culture medium in a concentration-dependent manner. SB 203580 [a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor] and PD 98059 (a p44/42 MAPK kinase inhibitor) were ineffective in modulating IL-1,-induced SP synthesis and secretion, and p60c-src kinase activity in DRG neurons. Whereas, IL-1 receptor antagonist and cycloheximide inhibited IL-1,-evoked secretion of SP-like immunoreactivity (SP-li), actinomycin D decreased it significantly but did not entirely abolish it. These findings show that phosphorylation of specific protein tyrosine residue(s) following IL-1 receptor activation might play a key role in IL-1, signalling to modulate PPT gene expression and SP secretion in sensory neurons. In view of the role of SP as an immunomodulator, these studies provide a new insight into neural-immune intercommunication in pain regulation in the sensory ganglia through the IL-1,-induced p60c-src activation. [source] Avirulence proteins from haustoria-forming pathogensFEMS MICROBIOLOGY LETTERS, Issue 2 2007Ann-Maree Catanzariti Abstract A major insight that has emerged in the study of haustoria-forming plant pathogens over the last few years is that these eukaryotic biotrophs deliver suites of secreted proteins into host cells during infection. This insight has largely derived from successful efforts to identify avirulence (Avr) genes and their products from these pathogens. These Avr genes, identified from a rust and a powdery mildew fungus and three oomycete species, encode small proteins that are recognized by resistance proteins in the host plant cytoplasm, suggesting that they are transported inside plant cells during infection. These Avr proteins probably represent examples of fungal and oomycete effector proteins with important roles in subverting host cell biology during infection. In this respect, they represent a new opportunity to understand the basis of disease caused by these biotrophic pathogens. Elucidating how these pathogen proteins gain entry into plant cells and their biological function will be key questions for future research. [source] The Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key HypothesisHELICOBACTER, Issue 3 2010Steffen Backert Abstract Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ,master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon. [source] Transmembrane adapters: attractants for cytoplasmic effectorsIMMUNOLOGICAL REVIEWS, Issue 1 2003Jonathan A. Lindquist Summary: Transmembrane adapter proteins (TRAPs) are a relatively new and growing family of proteins that include linker for activation of T cells (LAT), phosphoprotein associated with glycosphingolipid-enriched micro domains (PAG)/C-terminal Src kinase (Csk) binding protein (Cbp), SHP2-interacting transmembrane adapter protein (SIT), T cell receptor interacting molecule (TRIM), and the recently identified non-T cell activation linker (NTAL) and pp30. TRAPs share several common structural features, but more importantly they possess multiple sites of tyrosine phosphorylation, by which they act as scaffolds for recruiting cytosolic adapter and/or effector proteins. The membrane association of TRAPs places them near to the immunoreceptors, a position from which they coordinate and modulate the signals they receive to produce an appropriate cellular response. [source] The use of membrane translocating peptides to identify sites of interaction between the C5a receptor and downstream effector proteinsIMMUNOLOGY, Issue 4 2004Graham A. Auger Summary The complement fragment C5a is a potent leucocyte chemoattractant and activator, mediating its effects through a G-protein-coupled receptor. Whilst the C-terminal domain of this receptor has been shown to be essential for receptor desensitization and internalization, it is not known which domains couple to the receptor's heterotrimeric G proteins. In this report we have used a membrane translocating sequence (MTS) to examine the effects of the four intracellular domains of the human C5a receptor (C5aR) on the receptor's signalling via G,i family heterotrimeric G proteins in intact RBL-2H3 cells. The results indicate that all of the intracellular domains couple to downstream signalling, with the proximal region of the C terminus being a major binding site and intracellular loop 3 playing a role in G protein activation or receptor desensitization. [source] Normal and abnormal secretion by haemopoietic cellsIMMUNOLOGY, Issue 1 2001Jane C. Stinchcombe Summary The secretory lysosomes found in haemopoietic cells provide a very efficient mechanism for delivering the effector proteins of many immune cells in response to antigen recognition. Although secretion shows some similarities to the secretion of specialized granules in other secretory cell types, some aspects of secretory lysosome release appear to be unique to melanocytes and cells of the haemopoietic lineage. Mast cells and platelets have provided excellent models for studying secretion, but recent advances in characterizing the immunological synapse allow a very fine dissection of the secretory process in T lymphocytes. These studies show that secretory lysosomes are secreted from the centre of the talin ring at the synapse. Proper secretion requires a series of Rab and cytoskeletal elements which play critical roles in the specialized secretion of lysosomes in haemopoietic cells. [source] Perspective: Protein prenylation in glucose-induced insulin secretion from the pancreatic islet , cell: a perspectiveJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2008Anjaneyulu Kowluru ,,Insulin secretion , a simplified view ,,Endogenous GTP and its binding proteins are important for GSIS ,,G-proteins undergo post-translational modifications ,,Data accrued from studies involving generic inhibitors of protein prenylation ,,Data accrued from studies involving site-specific inhibitors of protein prenylation -,Lovastatin (LOVA) -,Limonene -,Perillic acid (PA) -,Manumycin A ,,Data accrued from studies involving over-expression of inactive mutants of PPTases -,3-Allyl and-vinyl farnesols and geranylgeraniols ,,What are the functional consequences of prenylation in the islet , cell? ,,How are PPTases regulated by glucose in the islet? ,,Conclusions and future directions Abstract Insulin secretion from the pancreatic , cell is regulated principally by the ambient concentration of glucose. However, the molecular and cellular mechanisms underlying the stimulus , secretion coupling of glucose-stimulated insulin secretion (GSIS) remain only partially understood. Emerging evidence from multiple laboratories suggests key regulatory roles for GTP-binding proteins in the cascade of events leading to GSIS. This class of signalling proteins undergoes a series of requisite post-translational modifications (e.g. prenylation) at their C-terminal cysteines, which appear to be necessary for their targeting to respective membranous sites for optimal interaction with their respective effector proteins. This communication represents a perspective on potential regulatory roles for protein prenylation steps (i.e. protein farnesylation and protein geranylgeranylation) in GSIS from the islet , cell.Possible consequences of protein prenylation and potential mechanisms underlying glucose-induced regulation of prenylation, specifically in the context of GSIS, are also discussed. [source] Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishesJOURNAL OF FISH BIOLOGY, Issue 8 2010T. G. Evans This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms. [source] Enhanced generation of Alzheimer's amyloid-, following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase CJOURNAL OF NEUROCHEMISTRY, Issue 2 2009Odete A. B. Da Cruz e Silva Abstract Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKC, and PKC, isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-, (A,) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKC, down-regulation; (ii) PKC, up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted A,. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered A, generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased A, generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity. [source] Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantiiMOLECULAR MICROBIOLOGY, Issue 3 2010Xuan Yi Summary Cyclic diguanylate (c-di-GMP) is a second messenger implicated in the regulation of various cellular properties in several bacterial species. However, its function in phytopathogenic bacteria is not yet understood. In this study we investigated a panel of GGDEF/EAL domain proteins which have the potential to regulate c-di-GMP levels in the phytopathogen Dickeya dadantii 3937. Two proteins, EcpB (contains GGDEF and EAL domains) and EcpC (contains an EAL domain) were shown to regulate multiple cellular behaviours and virulence gene expression. Deletion of ecpB and/or ecpC enhanced biofilm formation but repressed swimming/swarming motility. In addition, the ecpB and ecpC mutants displayed a significant reduction in pectate lyase production, a virulence factor of this bacterium. Gene expression analysis showed that deletion of ecpB and ecpC significantly reduced expression of the type III secretion system (T3SS) and its virulence effector proteins. Expression of the T3SS genes is regulated by HrpL and possibly RpoN, two alternative sigma factors. In vitro biochemical assays showed that EcpC has phosphodiesterase activity to hydrolyse c-di-GMP into linear pGpG. Most of the enterobacterial pathogens encode at least one T3SS, a major virulence factor which functions to subvert host defences. The current study broadens our understanding of the interplay between c-di-GMP, RpoN and T3SS and the potential role of c-di-GMP in T3SS regulation among a wide range of bacterial pathogens. [source] Pathogen trafficking pathways and host phosphoinositide metabolismMOLECULAR MICROBIOLOGY, Issue 6 2009Stefan S. Weber Summary Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells. [source] NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogeliiMOLECULAR MICROBIOLOGY, Issue 5 2005Peter Skorpil Summary Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR,rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes. [source] A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneriMOLECULAR MICROBIOLOGY, Issue 6 2005Claude Parsot Summary Bacteria of Shigella spp. are responsible for shigellosis in humans and use a type III secretion (TTS) system to enter epithelial cells and trigger apoptosis in macrophages. Transit of translocator and effector proteins through the TTS apparatus is activated upon contact of bacteria with host cells. Transcription of ,15 genes encoding effectors is regulated by the TTS apparatus activity and controlled by MxiE, an AraC family activator, and its coactivator IpgC, the chaperone of IpaB and IpaC translocators. Using a genetic screen, we identified ospD1 as a gene whose product negatively controls expression of genes regulated by secretion activity. OspD1 associates with the chaperone Spa15 and the activator MxiE and acts as an anti-activator until it is secreted. The mechanism regulating transcription in response to secretion activity involves an activator (MxiE), an anti-activator (OspD1), a co-anti-activator (Spa15), a coactivator (IpgC) and two anti-coactivators (IpaB and IpaC) whose alternative and mutually exclusive interactions are controlled by the duration of the TTS apparatus activity. [source] Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7MOLECULAR MICROBIOLOGY, Issue 5 2004Samantha Gruenheid Summary Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 uses a specialized protein translocation apparatus, the type III secretion system (TTSS), to deliver bacterial effector proteins into host cells. These effectors interfere with host cytoskeletal pathways and signalling cascades to facilitate bacterial survival and replication and promote disease. The genes encoding the TTSS and all known type III secreted effectors in EHEC are localized in a single pathogenicity island on the bacterial chromosome known as the locus for enterocyte effacement (LEE). In this study, we performed a proteomic analysis of proteins secreted by the LEE-encoded TTSS of EHEC. In addition to known LEE-encoded type III secreted proteins, such as EspA, EspB and Tir, a novel protein, NleA (non- LEE-encoded effector A), was identified. NleA is encoded in a prophage-associated pathogenicity island within the EHEC genome, distinct from the LEE. The LEE-encoded TTSS directs translocation of NleA into host cells, where it localizes to the Golgi apparatus. In a panel of strains examined by Southern blot and database analyses, nleA was found to be present in all other LEE-containing pathogens examined, including enteropathogenic E. coli and Citrobacter rodentium, and was absent from non-pathogenic strains of E. coli and non-LEE-containing pathogens. NleA was determined to play a key role in virulence of C. rodentium in a mouse infection model. [source] New effects of type III effectorsMOLECULAR MICROBIOLOGY, Issue 2 2003Roger Innes Summary The enzymatic activities and/or targets of four type III effector proteins from plant pathogens have been reported in a flurry of new papers. In this issue, XopD is shown to remove SUMO groups from host cell proteins, while in previous issues of Molecular Microbiology, HopPtoD2 was shown to function as a tyrosine phosphatase and AvrRpt2 as probably a cysteine protease that targets the host RIN4 protein. Finally, AvrPphB is revealed in a recent Science paper to function as a cysteine protease that targets the host PBS1 kinase. This work is providing some of the first insights into how plant pathogens subvert host cell signalling machinery to cause disease. [source] VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciensMOLECULAR MICROBIOLOGY, Issue 6 2003Krishnamohan Atmakuri Summary Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens , a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) , and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2 -terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB -encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector,coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. [source] A bacterial conjugation machinery recruited for pathogenesisMOLECULAR MICROBIOLOGY, Issue 5 2003Anja Seubert Summary Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans -complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens. [source] Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosisMOLECULAR MICROBIOLOGY, Issue 5 2003Gloria I. Viboud Summary Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop,Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ, triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE,, YopH, or YopJ, bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ, mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells. [source] Chaperones of the type III secretion pathway: jacks of all tradesMOLECULAR MICROBIOLOGY, Issue 1 2002Anne-Laure Page Summary The type III secretion (TTS) pathway is used by many Gram-negative bacteria to inject virulence proteins into cells of their host. The activity of the TTS apparatus is controlled by external signals and, in certain conditions, production and secretion are not coupled. Storage of some proteins before secretion involves their association with specific chaperones. Three classes of TTS chaperones have been distinguished according to whether they associate with: (i) one; (ii) several effector proteins; or (iii) the two translocators that allow passage of effectors across the membrane of eukaryotic cells. These chaperones are required for stabilization of their substrate(s) and prevention of their premature interactions with other partners during storage. They also play a role in secretion of their substrate(s). Some chaperones are also involved in transcriptional regulation of certain genes in response to the activity of secretion. The flagellar export apparatus is closely related to the TTS apparatus and some proteins of the flagellar export system have also been proposed to be chaperones that prevent premature interactions between the flagellum subunits. [source] Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cellMOLECULAR MICROBIOLOGY, Issue 1 2002Boris Szurek Summary Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell. [source] |