Home About us Contact | |||
Effector Phenotype (effector + phenotype)
Selected AbstractsGenerating functional CD8+ T cell memory response under transient CD4+ T cell deficiency: Implications for vaccination of immunocompromised individualsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2008Corey Smith Abstract Studies based on either MHC class II-knockout or CD4+ T cell-depleted murine models have demonstrated a critical role for CD4+ T cells in the generation of CD8+ T cell memory. However, it is difficult to extend these findings to immunocompromised humans where a complete loss of CD4+ T cells is rarely observed. Here, we have developed a model setting, which allows studies on the generation of CD8+ T cell memory responses in a transient CD4+ T cell-deficient setting similar to that seen in immunocompromised patients. Immunisation with an adenoviral vaccine under transient helpless or help-deficient conditions showed varying degrees of impact on the priming of CD8+ T cell responses. Antigen-specific T cells generated under normal CD4+ T cell help and transient help-deficient conditions showed similar effector phenotype and were capable of proliferation upon secondary antigen encounter. Most importantly, in spite of CD4+ T cell deficiency, the long-term CD8+ T cell memory response remained functionally stable and showed comparable cytotoxic effector function as seen in CD8+ T cells generated with normal CD4+ T cell numbers. These findings provide evidence that in spite of partially impaired activation of a primary CD8+ T cell response, a fully functional and stable memory CTL response can be induced under conditions of severe transient CD4+ T cell deficiency. [source] Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infectionEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2006Gennadiy Zelinskyy Abstract Cytolytic CD8+ T cells are critical for the control of acute Friend virus (FV) infection yet they fail to completely eliminate the virus during chronic infection because they are functionally impaired by regulatory T cells (Treg). We performed a kinetic analysis of T cell responses during FV infection to determine when dysfunction of CD8+ T cells and suppressive activity of CD4+ regulatory T cells develops. At 1,week post infection, virus-specific CD8+ T cells with effector phenotype and cytolytic potential expanded. Peak expansion was found at 12,days post infection, correlating with peak viral loads. After 2,weeks when viral loads dropped, numbers of activated CD8+ T cells started to decline. However, a population of virus-specific CD8+ T cells with effector phenotype was still detectable subsequently, but these cells had lost their ability to produce granzymes and to degranulate cytotoxic molecules. Contemporaneous with the development of CD8+ T cell dysfunction, different CD4+ T cell populations expressing cell surface markers for Treg and the Treg-associated transcription factor Foxp3 expanded. Transfer as well as depletion experiments indicated that regulatory CD4+ cells developed during the second week of FV infection and subsequently suppressed CD8+ T cell functions, which was associated with impaired virus clearance. [source] Preferential Priming of Alloreactive T Cells with Indirect ReactivityAMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2009T. V. Brennan The relative contributions of the direct and indirect pathways in alloimmune responses have not been fully elucidated. We report a novel murine TCR transgenic system that can simultaneously track the CD4-direct (CD4-d), CD4-indirect (CD4-i) and CD8-direct (CD8-d) pathways after transplantation. Using this system, we have observed a profoundly greater proliferation of CD4-i T cells relative to CD4-d and CD8-d T cells after transplantation. Furthermore, a much larger proportion of CD4-i T cells attain an effector phenotype. We also analyzed endogenous, wild-type T cells using enzyme-linked immunospot analysis. In naïve mice, T cells with indirect reactivity were undetectable, but T cells with direct reactivity were abundant. However, 10 days after skin or heterotopic heart transplantation, CD4-i T cells comprised approximately 10% of the CD4+ response. Consistent with increased priming of the CD4-i pathway, we observed that the CD4-i T cells were further enriched in the effector cells migrating to the allograft and in memory-like T cells persisting after rejection. Thus, priming of the CD4-i pathway is favored after transplantation, allowing a rare population to rapidly become a major component of the CD4+ T-cell response in acute allograft rejection. The generalizability of this observation to other models remains to be determined. [source] Activation drives PD-1 expression during vaccine-specific proliferation and following lentiviral infection in macaquesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2008David Abstract Recent data supports that increased expression of PD-1, a negative regulator of immune function, is associated with T cell exhaustion during chronic viral infection. However, PD-1 expression during acute infection and vaccination has not been studied in great detail in primates. Here, we examine PD-1 expression on CD3+ T cells following DNA vaccination or lentiviral infection of macaques. Ex vivo peptide stimulation of PBMC from DNA-vaccinated uninfected macaques revealed a temporal increase in PD-1 expression in proliferating antigen-specific CD8+ T cells. Following the initial increase, PD-1 expression steadily declined as proliferation continued, with a concomitant increase in IFN-, secretion. Subsequent examination of PD-1 expression on T cells from uninfected and lentivirus-infected non-vaccinated macaques revealed a significant increase in PD-1 expression with lentiviral infection, consistent with previous reports. PD-1 expression was highest on cells with activated memory and effector phenotypes. Despite their decreased telomere length, PD-1hi T cell populations do not appear to have statistically significant uncapped telomeres, typically indicative of proliferative exhaustion, suggesting a different mechanistic regulation of proliferation by PD-1. Our data indicate that PD-1 expression is increased as a result of T cell activation during a primary immune response as well as during persistent immune activation in macaques. Supporting Information for this article is available at www.wiley-vch.de/contents/jc_2040/2008/37857_s.pdf [source] |