Effective Charge (effective + charge)

Distribution by Scientific Domains


Selected Abstracts


Charge and Mass Transfer Across the Metal/Solution Interface

ISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2008
Eliezer Gileadi
Electrode reactions are characterized by charge transfer across the interface. The charge can be carried by electrons or by ions. It is shown here that when both mass and charge cross the interface, the charge must be carried by the ionic species, not by the electrons, as a result of the very large difference in the time scale for electron and ion transfer. A prime example of charge transfer by ions is metal deposition. It is proposed that ion transfer occurs by migration of the ions across the interface, under the influence of the high electrostatic field in the double layer. The rate constants observed for metal deposition are comparable to those for outer-sphere charge transfer. These unexpectedly high rate constants for metal deposition are explained by a model in which removal of the solvation shell and reduction of the effective charge on the metal ion occur in many small steps, and a make-before-break mechanism exists, which lowers the total Gibbs energy of the system as it moves along the reaction coordinate from the initial to the final state. [source]


Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 16 2010
Maria V. Piaggio
Abstract Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed. [source]


Anomalous Dynamical Charge Change Behavior of Nanocrystalline 3C-SiC upon Compression

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2004
Haozhe Liu
Using diamond anvil cell (DAC) technique, in situ high-pressure Raman scattering and energy-dispersive X-ray diffraction (EDXRD) experiments were used at room temperature to study 3C-SiC with an average grain size of 30 nm. In contrast to its bulk counterpart, a decrease of the Born's transverse effective charge of these nanocrystals was observed with increasing pressure from measurements of the longitudinal and transverse optical phonon modes (longitudinal optical,transverse optical) splitting. This is therefore indicative of a diminishing ionicity of nanocrystalline 3C-SiC on compression. [source]


Hydrodynamic Size and Electrophoretic Mobility of Poly(styrene sulfonate) versus Molecular Weight,

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 19-20 2007
Ute Böhme
Abstract The effective charge of a macromolecule in solution is significantly smaller than the nominal charge, derived form the number of charged groups and the degree of dissociation. It is reduced by counterion condensation, shielding a considerable fraction of the macromolecules charge. As an example the influence of the molecular weight on hydrodynamic size and electrophoretic mobility of poly(styrene sulfonate) has been investigated. While from diffusion the hydrodynamic size is inferred, in a combination with electrophoresis NMR the effective charge is calculated. At low molecular weight the effective charge is equal to the nominal charge, in an intermediate range the effective charge is that predicted from counterion condensation theory, while at higher molecular weights it becomes considerably smaller. [source]


Theoretical studies of the spin Hamiltonian parameters and the local structure for the orthorhombic V4+ in CaYAlO4

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 6 2008
Chuan-Ji Fu
Abstract The spin Hamiltonian parameters (g -factors and the hyperfine structure constants) and the local structure for the orthorhombic V4+ in CaYAlO4 are theoretically studied from the perturbation formulas of these parameters for a 3d1 ion in orthorhombically distorted octahedra. Based on the present studies, this center is explicitly assigned to V4+ occupying the Al3+ site, associated with one next-nearest-neighbor Mg2+ replacing the host Al3+ (i.e. MgAl) in the ab -plane due to the charge compensation. Since the effective charge of the compensator is negative (,e), the ligand O2, intervening in the impurity V4+ and the MgAl would undergo a small displacement (,0.08 Å) towards the central ion because of the electrostatic repulsion. The local structure of this center can be described as elongation of the oxygen octahedron along the c- axis and the slight orthorhombic distortion in the perpendicular direction. The theoretical spin Hamiltonian parameters and the optical transitions based on the above local structure show reasonable agreement with the experimental data. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Light-induced neutralization of hydrogen shallow donors in zinc oxide

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 8 2006
N. H. Nickel
Abstract Infrared absorption measurements of the O,H shallow donor complex in zinc oxide show that its vibrational mode is very sensitive to sub band-gap illumination. Upon illumination the intensity of the O,H vibrational line exhibits a pronounced decrease. This effect is completely reversible. Annealing the specimens at temperatures above 30 K restores the O,H vibrational line. The decrease and increase of the O,H absorption line is caused by a change of the infrared effective charge due to neutralization and ionization, respectively, of H shallow donors. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


New insight on ,-lactoglobulin binding sites by 1-anilinonaphthalene-8-sulfonate fluorescence decay

PROTEIN SCIENCE, Issue 10 2000
Maddalena Collini
Abstract The fluorescence time decay parameters of the ,-lactoglobulin-1-anilinonaphthalene-8-sulfonate complex have been investigated under physical and chemical perturbations (2 < pH < 8 and added electrolyte 0 < NaCl < 0.5 M) to obtain new insight on the nature of the protein binding interactions. A double exponential decay of the bound probe lifetime has been confirmed by the presence of a longer component, 11 to 14.5 ns, and a shorter component, 2.5 to 3.5 ns. The two lifetimes are ascribed to different binding modes associated also with different exposure to the solvent; in particular, the longer component is attributed to binding inside the hydrophobic beta barrel, while a "surface" site is suggested for the shorter component. A detailed analysis of the lifetime fractional intensities correlates the binding constants with ionic strength and supports the presence of electrostatic effects at both sites. A Debye,Hückel approach, applied to extrapolate the electrostatic free energy contribution vs. pH at vanishing ionic strength, gives interesting clues on the effective charge felt by the ANS ligands in the proximity of each site. In particular, binding is found to parallel the aspartate and glutamate titrations between pH 3 and pH 4.5; the "surface" site mainly responds to the presence of these local titrating charges while the "internal" site more closely follows the overall protein net charge. [source]


Influence of pressure on the lengths of chemical bonds

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2003
I. David Brown
An expression to describe the force that a chemical bond exerts on its terminal atoms is proposed, and is used to derive expressions for the bond force constant and bond compressibility. The unknown parameter in this model, the effective charge on the atoms that form the bond, is determined by comparing the derived force constants with those obtained spectroscopically. The resultant bond compressibilities are shown to generally agree well with those determined from high-pressure structure determinations and from the bulk moduli of high-symmetry structures. Bond valences can be corrected for pressure by recognizing that the bond-valence parameter, R0, changes with pressure according to the equation [source]


Electron excitation cross section of atomic transitions in the two-state approximation

ANNALEN DER PHYSIK, Issue 6 2004
A. Kamli
Abstract The cross section of the 3s , 3p transition of sodium produced by electron impact has been calculated by performing a numerical integration of the coupled differential equations. The potential functions have been calculated exactly using the hydrogen-like wave functions for the valence electron of the sodium with an effective charge adjusted to fit the experimental 3s , 3p line strength. The results compare very well with experimental data and with those obtained using more elaborate and sophisticated models. [source]


Interaction study of a lysozyme-binding aptamer with mono- and divalent cations by ACE

ELECTROPHORESIS, Issue 3 2010
Marie Girardot
Abstract Binding between an aptamer and its target is highly dependent on the conformation of the aptamer molecule, this latter seeming to be affected by a variety of cations. As only a few studies have reported on the interactions of monovalent or divalent cations with aptamers, we describe herein the use of ACE in its mobility shift format for investigating interactions between various monovalent (Na+, K+, Cs+) or divalent (Mg2+, Ca2+, Ba2+) cations and a 30-mer lysozyme-binding aptamer. This study was performed in BGEs of different natures (phosphate and MOPS buffers) and ionic strengths. First, the effective charges of the aptamer in 30,mM ionic strength phosphate and MOPS (pH 7.0) were estimated to be 7.4 and 3.6, respectively. Then, corrections for ionic strength and counterion condensation effects were performed for all studies. The effective mobility shift was attributed not only to these effects, but also to a possible interaction with the buffer components (binary or ternary complexes) as well as possible conformational changes of the aptamer. Finally, apparent binding constants were calculated for divalent cations with mathematical linearization methods, and the influence of the nature of the BGE was evidenced. [source]


Electronic Structure and Bonding of All Crystalline Phases in the Silica,Yttria,Silicon Nitride Phase Equilibrium Diagram

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2004
Wai-Yim Ching
This paper reviews the structures and properties of 10 binary, ternary, and quaternary crystals within the equilibrium phase diagram of the SiO2,Y2O3,Si3N4 system. They are binary compounds SiO2, Y2O3, Si3N4; ternary compounds Si2N2O, Y2Si2O7, and YSi2O5; and quaternary crystals Y2Si3N4O3 (M-melilite), Y4Si2O7N2, (N-YAM), YSiO2N (wallastonite), and Y10(SiO4)6N2 (N-apatite, N-APT). Although the binary compounds are well-known and extensively studied, the ternary and the quaternary crystals are not. Most of the ternary and the quaternary crystals simply have been referenced as secondary phases in the processing of nitrogen ceramics. Their crystal structures are complex and not precisely determined. In the quaternary crystals, there exists O/N disorder in that the exact atomic positions of the anions cannot be uniquely determined. It is envisioned that a variety of cation,anion bonding configurations exist in these complex crystals. The electronic structure and bonding in these crystals are, therefore, of great interest and are indispensable for a fundamental understanding of structural ceramics. We have used ab initio methods to study the structure and bonding properties of these 10 crystals. For crystals with unknown or incomplete structural information, we use an accurate total energy relaxation scheme to obtain the most likely atomic positions. Based on the theoretically modeled structures, the electronic structure and bonding in these crystals are investigated and related to various local cation,anion bonding configurations. These results are presented in the form of atom-resolved partial density of states, Mulliken effective charges, and bond order values. It is shown that Y,O and Y,N bonding are not negligible and should be a part of the discussion of the overall bonding schemes in these crystals. Spectroscopic properties in the form of complex, frequency-dependent dielectric functions, X-ray absorption near-edge structure (XANES), and the electron energy-loss near-edge structure (ELNES) spectra in these crystals also are calculated and compared. These results are discussed in the context of specific bonding configurations between cations (silicon and yttrium) and anions (oxygen and nitrogen) and their implications on intergranular thin films in polycrystalline Si3N4 containing rare-earth elements. [source]


Elasticity, electronic structure, and dielectric property of cubic SrHfO3 from first-principles

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2009
Z. F. Hou
Abstract Recently, SrHfO3 compound was proposed as a potential gate dielectric to fabricate metal,oxide,semiconductor field-effect transistors (MOSFET) with equivalent oxide thickness (EOT) below 1 nm. Here we report the elasticity, electronic structure, and dielectric property of cubic SrHfO3 from first-principle study based on the plane-wave pseudopotential method within the local density approximation (LDA). The independent elastic constants of cubic SrHfO3 are derived from the derivative of total energy as a function of lattice strain. The elastic modulus is predicted from Voight-Hill bounds. The Born effective charges, electronic dielectric tensors, long wavelength phonon frequencies, and LO,TO splitting of cubic SrHfO3 are computed by linear response with density functional perturbation theory (DFPT). The calculated lattice constant and bulk modulus of cubic SrHfO3 are in good agreement with the available experimental data and other theoretical results. Our results show cubic SrHfO3 is a ductile insulator with an indirect band gap of 3.74 eV (LDA value) and electric dielectric tensor of 4.43, Hf 5d states and O 2p states exhibit a strong hybridization, and cubic SrHfO3 can be mechanically stable. In addition, the phonon frequency of ,soft mode' at zone-center also agrees well with previous theoretical value. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]