Effect Study (effect + study)

Distribution by Scientific Domains


Selected Abstracts


Empirical models of UV total radiation and cloud effect study

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2010
David Mateos Villán
Abstract Several empirical models of hourly ultraviolet total radiation (UVT) have been proposed in this study. Measurements of UVT radiation, 290,385 nm, have been recorded at ground level from February 2001 to June 2008 in Valladolid, Spain (latitude 41°40,N, longitude 4°50,W and 840 m a.s.l.). The empirical models have emerged due to the lack of some radiometric variables in measuring stations. Hence, good forecasts of them can be obtained from usual measures in these stations. Therefore, some advantages of the empirical models are that they allow the estimation of past missing data in the database and the forecast of future ultraviolet solar availability. In this study, reported models in the bibliography have been assessed and recalibrated. New expressions have been proposed that allow obtaining hourly values of ultraviolet radiation from global radiation measures and parameters as clearness index and relative optical air mass. The accuracy of these models has been assessed through the following statistical indices: mean bias, mean-absolute bias and root-mean-square errors whose values are close to zero, below 7% and below 10%, respectively. Two new clear sky models have been used to evaluate two new parameters: ultraviolet and global cloud modification factors, which can help to understand the role of the clouds on solar radiation. The ultraviolet cloud modification factor depends on cloudiness in such a way that its value under overcast skies is half of the cloudless skies one. Exponential and potential fits are the best relationships between both cloud factors. Finally, these parameters have been used to build new UV empirical models which show low values of the statistical indices mentioned above. Copyright © 2009 Royal Meteorological Society [source]


MP2, DFT-D, and PCM study of the HMB,TCNE complex: Thermodynamics, electric properties, and solvent effects,

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 9 2008
Ondrej Kysel
Abstract Geometry, thermodynamic, and electric properties of the ,-EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6-31G* and, partly, DFT-D/6-31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB,TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10,10 m and the corresponding BSSE corrected interaction energy is ,51.3 kJ mol,1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2,TCNE and HMB,TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10,10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06,3.16 × 10,10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB,TCNE complex formation in gas phase are: ,H0 = ,61.59 kJ mol,1, ,S = ,143 J mol,1 K,1, ,G0 = ,18.97 kJ mol,1, and K = 2,100 dm3 mol,1. Experimental data, however, measured in CCl4 are significantly lower: ,H0 = ,34 kJ mol,1, ,S = ,70.4 J mol,1 K,1, ,G0 = ,13.01 kJ mol,1, and K = 190 dm3 mol,1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol,1 which is very close to our PCM value 6.5 kJ mol,1. MP2/6-31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6-31G* study supplemented by DFT-D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of ,-EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]


Thermodynamic origin of the chiral recognition of tryptophan on teicoplanin and teicoplanin aglycone stationary phases

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 5 2005
Mohamed Haroun
Abstract The D-, L-tryptophan binding and the chiral recognition properties of the teicoplanin and teicoplanin aglycone (TAG) chiral stationary phase (CSPs) were compared at various column temperatures. The solute adsorption isotherms (bi-Langmuir model) were determined for both the two CSPs using the perturbation method. It was demonstrated that the sugar units were involved in the reduction of the apparent enantioselectivity through two phenomena: (i) the inhibition of some enantioselective contacts with low-affinity binding regions of the aglycone and (ii) a decrease in the stereoselective properties of the aglycone high-affinity binding pocket. The phenomenon (ii) was governed by both a decrease in the ratio of the enantiomer adsorption constant and a strong reduction of the site accessibility for D- and L-tryptophan. In addition, a temperature effect study was performed to investigate the chiral recognition mechanism at the aglycone high-affinity pocket. An enthalpy-entropy compensation analysis derived from the Grunwald model as well as the comparison with the literature data demonstrated that the enantioselective binding mode was dependent on an interface dehydration process. The change in the enantioselective process observed between the TAG and teicoplanin CSP was characterized by a difference of ca. 2,3 ordered water molecules released from the species interface. [source]


A new light-time effect study of AR Aurigae

ASTRONOMISCHE NACHRICHTEN, Issue 6 2003
B. Albayrak
Abstract A period study of the young binary AR Aur based on the extensive series of published photoelectric/ccd minima times indicates the cyclic (O , C) variation for the system. This continuous oscillatory variation covers almost three cycles, about 6000 orbital periods, by the present observational data. It can be attributed to the light-time effect due to a third body with a period of 23.68 ± 0.17 years in the system. The analysis yields a light-time semi-amplitude of 0.0084 ± 0.0002 day and an orbital eccentricity of 0.20 ± 0.04. Adopting the total mass of AR Aur, the mass of the third body assumed in the co-planar orbit with the binary is M3 = 0.54 ± 0.03 M, and the semimajor axis of its orbit is a3 = 13.0 + 0.2 AU. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]