Effluent Quality (effluent + quality)

Distribution by Scientific Domains


Selected Abstracts


Effects of pulp and paper mill effluent on fish: A temporal assessment of fish health across sampling cycles

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010
Timothy J. Barrett
Abstract The Canadian environmental effects monitoring (EEM) program is a regulated, cyclical, industry-funded program designed to determine whether receiving water impacts exist when a mill is in compliance with its discharge limits. The results from three cycles of the fish monitoring program (1992 to 2004) are available from over 200 surveys of fish compared between sites located upstream and downstream of pulp and paper mill effluent outfalls. Previous meta-analyses have shown a national average response pattern across cycles characterized by an increase in endpoints measuring energy storage and growth and a decrease in a reproductive endpoint, consistent with a response of nutrient enrichment in combination with some form of metabolic disruption. Although the national average pattern of effects was temporally consistent, there was some variability in the magnitude of effects among cycles. Questions were raised as to whether the intercycle variability was due to changes in effluent quality or due, at least in part, to other factors. The present study compares responses over the first three cycles, and shows that the choice of sentinel species is likely to be a major contributing factor to the variability in observed effects. Subset analyses using studies from mills that used the same sentinel species across cycles reveal fairly uniform responses and little evidence of significant improvements in overall fish health from cycles one to three. However, a meta-analysis using 1991 data collected from 10 mills before the implementation of the EEM program and data from the same mills collected during cycles one to three of the program reveal significantly reduced effects on relative liver weight and potential improvements in other endpoints. Environ. Toxicol. Chem. 2010;29:440,452. © 2009 SETAC [source]


Use of paired fathead minnow (Pimephales promelas) reproductive test.

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2006
Part 1: Assessing biological effects of final bleached kraft pulp mill effluent using a mobile bioassay trailer system
Abstract Reproductive effects have been recorded in wild fish in waters receiving pulp mill effluent (PME) since the mid to late 1980s. Laboratory assays with fathead minnow (FHM; Pimephales promelas) have been developed to better understand fish responses to PME. However, observations from laboratory studies have been variable, making it difficult to establish cause/effect relationships. A lack of environmental relevance in these laboratory studies may have contributed to the variability observed. The objectives of the present study were, first, to determine the effects of bleached kraft PME (BKME) on FHM under environmentally realistic conditions (i.e., ambient water and effluent quality) and, second, to determine the suitability of pair-breeding FHM to better link BKME-induced changes in indicators at the biochemical, individual, and population levels. A mobile bioassay trailer was situated on-site at a bleached kraft mill for 60 d, allowing supply of both ambient water (Lake Superior, Canada) and final BKME. The reproductive output of FHM was initially assessed for 21 d to obtain baseline data pre-exposure. At the end of the pre-exposure period, selected breeding pairs were exposed to final BKME (100% v/v and 1% v/v) for 21 d. Results demonstrated a stimulatory response pattern at 1% BKME (e.g., increased egg production) compared to control. In the 100% treatment, spawning events were reduced and fewer eggs were produced during the first two weeks of exposure. Exposure to 100% (v/v) BKME also resulted in ovipositor development in males and development of male secondary sex characteristics in females. Obtaining pre-exposure data and use of pair-breeding FHM in this assay gave a sensitive indication of effluent effects and allowed accurate comparisons of endpoints to be made. [source]


Study of saline wastewater influence on activated sludge flocs through automated image analysis

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2009
Daniela P Mesquita
Abstract BACKGROUND: In activated sludge systems, sludge settling ability is considered a critical step in effluent quality and determinant of solid,liquid separation processes. However, few studies have reported the influence of saline wastewater on activated sludge. This work aims the evaluation of settling ability properties of microbial aggregates in a sequencing batch reactor treating saline wastewaters of up to 60 g L,1 NaCl, by image analysis procedures. RESULTS: It was found that the sludge volume index (SVI) decreased with salt content up to 20 g L,1, remaining somewhat stable above this value. Furthermore, it was found that between the first salt concentration (5 g L,1) and 20 g L,1 aggregates suffered a strong deflocculation phenomenon, leading to a heavy loss of aggregated biomass. Regarding SVI prediction ability, a good correlation coefficient of 0.991 between observed and predicted SVI values was attained. CONCLUSION: From this work the deflocculation of aggregated biomass with salt addition due to pinpoint floc formation, dispersed bacteria growth and protozoa absence could be established. With respect to SVI estimation, and despite the good correlation obtained, caution is advisable given the low number of SVI data points. Copyright © 2008 Society of Chemical Industry [source]


Increased biofilm activity in BGAC reactors

AICHE JOURNAL, Issue 3 2005
Moshe Herzberg
Abstract In bioreactors systems granulated activated carbon (GAC) was proven to be an advantageous biofilm carrier over inert media with similar physical properties (nonadsorbing carbon) under conditions of pollutant partial penetration in the biofilm. Results from laboratory experiments using atrazine degrading bacteria (Pseudomonas ADP) and modeling assuming GAC adsorption/desorption mechanism, showed higher atrazine degradation rate resulting in better effluent quality in the biofilm granulated activated carbon (BGAC) reactor. Increased biofilm activity due to the double flux of substrate from the bulk liquid and from the GAC can explain the better performance of the BGAC reactor. © 2005 American Institute of Chemical Engineers AIChE J, 51: 1042,1047, 2005 [source]


Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005
Anthony S. Kappell
Abstract Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l,1) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (>95%) compared to the unaerated control bioreactor (,65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l,1). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l,1), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality. © 2005 Wiley Periodicals, Inc. [source]