Home About us Contact | |||
Efficient Pollinators (efficient + pollinator)
Selected AbstractsPollination mutualism between a new species of the genus Colocasiomyia de Meijere (Diptera: Drosophilidae) and Steudnera colocasiifolia (Araceae) in Yunnan, ChinaENTOMOLOGICAL SCIENCE, Issue 1 2006Kohei TAKENAKA Abstract A new species of the genus Colocasiomyia de Meijere (Diptera: Drosophilidae) was discovered from inflorescences of Steudnera colocasiifolia K. Koch (Araceae) in Yunnan, China. The new species is described as Colocasiomyia steudnerae Takenaka and Toda, sp. nov., and we investigated the reproductive ecology of both the fly and the plant species. This fly species reproduces in the inflorescences/infructescences of the plant, and depends almost throughout its entire life cycle on the host plant. The fly species is the most abundant flower visitor for S. colocasiifolia and behaves intimately with the flowering events, suggesting that it is the unique and most efficient pollinator for the host plant. Bagging (insect-exclusion) treatment of inflorescences resulted in no fruits. These findings strongly suggest that intimate pollination mutualism has evolved between the fly and the host plant, as are known in other Colocasiomyia flies and Araceae plants. One notable feature of this system is that the new species almost monopolizes the host-plant inflorescence as a visitor, without any cohabiting Colocasiomyia species. In comparison to other cases where two Colocasiomyia species share the same inflorescence and infructescence of Araceae host plants for reproduction by separating their breeding niches microallopatrically between the staminate (upper male-flower) and the pistillate (lower female-flower) regions on the spadix, C. steudnerae exhibits a mixture of stamenicolous and pistillicolous breeding habits. [source] Limited ability of Palestine Sunbirds Nectarinia osea to cope with pyridine alkaloids in nectar of Tree Tobacco Nicotiana glaucaFUNCTIONAL ECOLOGY, Issue 6 2004H. TADMOR-MELAMED Summary 1Secondary compounds are common in floral nectar but their relative effects on nectar consumption and utilization in nectarivorous birds are unclear. 2We studied the effect of two pyridine alkaloids, nicotine and anabasine, present in Tree Tobacco (Nicotiana glauca) nectar, on food consumption, gut transit time and sugar assimilation efficiency of the Palestine Sunbird (Nectarinia osea), a pollinator of N. glauca in east Mediterranean ecosystems. 3Sunbirds demonstrated dose-dependent deterrence; they were not deterred by the lowest natural concentrations of these alkaloids in nectar (0·1 ppm nicotine and 0·6 ppm anabasine) but they were significantly deterred by the average concentrations detected in nectar (0·5 ppm nicotine and 5 ppm anabasine). 4The two pyridine alkaloids reduced gut transit time (by 30,42%) and sugar assimilation efficiency (by 9,17%) compared with the control alkaloid-free diet. 5Sunbirds are able to cope with low, but not average, concentrations of nicotine and anabasine in N. glauca nectar. If sunbirds are efficient pollinators of N. glauca they may induce selection on it to reduce pyridine alkaloid production in the nectar. Alternatively, high concentrations in some N. glauca plants may lead the birds to visit more plants with lower alkaloid concentrations. Hence, they will be more efficient pollinators, especially if other nectar-producing plants are scarce. [source] The relative importance of birds and bees in the pollination of Metrosideros excelsa (Myrtaceae)AUSTRAL ECOLOGY, Issue 5 2009GABRIELE SCHMIDT-ADAM Abstract Exclusion experiments were used to assess the effect of different pollinator groups on outcrossing and seed production in Metrosideros excelsa. The main study site was Little Barrier Island, New Zealand where indigenous bird and native solitary bees are the main flower visitors. Our results showed that native birds were more important pollinators of M. excelsa than native bees. Seed production was much higher in open pollination than in two exclusion experiments where either birds were excluded and native bees only had access to flowers, or where all pollinators had been excluded. The number of fertile seeds per capsule was 45% higher after open pollination than in treatments with bee visitation only and 28% higher than in treatments where all flower visitors were excluded. Estimated outcrossing rates were significantly higher (tm = 0.71) for open pollination in the upper canopy (>4 m above-ground level) where bird visitation is presumed to be more frequent than for a treatment with native bee access only (tm = 0.40). Our results also suggest that a large proportion of seeds (66%) arise from autonomous self-pollination when all pollinators are excluded. In four trees of a modified mainland population with predominantly introduced birds and a mixture of introduced and native bees there was no decrease in seed production for the treatment allowing bee access only, indicating that , in contrast to native bees , honeybees may be more efficient pollinators of M. excelsa. Observation of the foraging behaviour of both groups of bees showed that native bees contact the stigma of flowers less frequently than honeybees. This is likely to be a consequence of their smaller body size relative to honeybees. [source] Consumptive emasculation: the ecological and evolutionary consequences of pollen theftBIOLOGICAL REVIEWS, Issue 2 2009Anna L. Hargreaves ABSTRACT Many of the diverse animals that consume floral rewards act as efficient pollinators; however, others ,steal' rewards without ,paying' for them by pollinating. In contrast to the extensive studies of the ecological and evolutionary consequences of nectar theft, pollen theft and its implications remain largely neglected, even though it affects plant reproduction more directly. Here we review existing studies of pollen theft and find that: (1) most pollen thieves pollinate other plant species, suggesting that theft generally arises from a mismatch between the flower and thief that precludes pollen deposition, (2) bees are the most commonly documented pollen thieves, and (3) the floral traits that typically facilitate pollen theft involve either spatial or temporal separation of sex function within flowers (herkogamy and dichogamy, respectively). Given that herkogamy and dichogamy occur commonly and that bees are globally the most important floral visitors, pollen theft is likely a greatly under-appreciated component of floral ecology and influence on floral evolution. We identify the mechanisms by which pollen theft can affect plant fitness, and review the evidence for theft-induced ecological effects, including pollen limitation. We then explore the consequences of pollen theft for the evolution of floral traits and sexual systems, and conclude by identifying key directions for future research. [source] |