Home About us Contact | |||
Efficient Assembly (efficient + assembly)
Selected AbstractsIntra- and inter-allelic ordering of T cell receptor , chain gene assemblyEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2005Bernard Khor Abstract Allelic exclusion at the TCR, locus mandates that gene assembly be regulated in a manner that permits feedback inhibition of further complete TCR, rearrangements upon pre-TCR expression. Here we show that assembly of TCR, chain genes from V,, D, and J, gene segments is intra-allelically ordered, proceeding primarily through DJ,, and not VD,, intermediates. This ensures that V, to DJ, rearrangement, which can be feedback inhibited, is the final step in the assembly process. A newly assembled VDJ, rearrangement must be tested to determine if it is in-frame before V, to DJ, rearrangement is permitted on the alternate allele. This inter-allelic ordering may occur through a general inefficiency of V, to DJ, rearrangement and/or through static differences in accessibility of the two TCR, alleles. However, we find that within the regulatory context of allelic exclusion, V, to DJ, rearrangement proceeds to completion on both alleles. Furthermore, all possible VDJ, rearrangements are not completed on one allele before V, to DJ, rearrangement is initiated on the alternate allele. Together, these data support a dynamic model of inter-allelic accessibility that permits the ordered and efficient assembly of complete variable region genes on both TCR, alleles during T cell development. [source] Antibodies Against Hepatitis C Virus,Like Particles and Viral Clearance in Acute and Chronic Hepatitis CHEPATOLOGY, Issue 3 2000Thomas F. Baumert M.D. We recently described the efficient assembly of hepatitis C virus (HCV) structural proteins into HCV-like particles (HCV-LPs) in insect cells. These noninfectious HCV-LPs have similar morphologic and biophysical properties as putative virions isolated from HCV-infected humans and can induce a broadly directed immune response in animal models. The HCV envelope proteins of HCV-LPs are presumably presented in a native, virion-like conformation and may therefore interact with antienvelope antibodies directed against conformational epitopes. In this study, HCV-LPs were used as capture antigens in an enzyme-linked immunosorbent assay (ELISA) to detect and quantify antibodies against HCV structural proteins in patients with acute and chronic hepatitis C. High titers of anti,HCV-LP antibodies were detected in patients chronically infected with HCV genotypes 1 to 6. In contrast to individuals with chronic hepatitis C, patients with acute self-limited hepatitis C displayed only a transient and weak seroreactivity against HCV-LPs. Patients with chronic HCV infection successfully treated with interferon demonstrated a gradual decline of anti,HCV-LP titers during or subsequent to viral clearance. Sustained interferon responders were characterized by significantly higher pretreatment levels of anti,HCV-LP antibodies as compared with nonresponders (P = .0001). In conclusion, HCV infection is associated with limited humoral immunity against the envelope proteins present on the HCV-LPs. An HCV-LP,based ELISA may be a useful diagnostic tool to distinguish acute hepatitis C from chronic HCV infection with exacerbation, and to predict viral clearance in response to interferon. [source] Facile Synthesis of Polycyclic Fluorene Derivatives via a Palladium-Catalyzed Coupling, Propargyl-Allenyl Isomerization and Schmittel Cyclization SequenceADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2009Ruwei Shen Abstract A stepwise process involving Sonogashira coupling, propargyl-allenyl isomerization and Schmittel cyclization has been realized, leading to an efficient synthesis of polycyclic fluorene derivatives from readily available starting materials. The reaction features the formation of three new carbon-carbon bonds to construct the benzene unit together with an efficient assembly of three or four rings in a single operative step. [source] A DNA replicon system for rapid high-level production of virus-like particles in plantsBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009Zhong Huang Abstract Recombinant virus-like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low-level antigen accumulation and long-time frame to produce transgenic plants are the two major roadblocks in the practical development of plant-based VLP production. In this article, we describe the optimization of geminivirus-derived DNA replicon vectors for rapid, high-yield plant-based production of VLPs. Co-delivery of bean yellow dwarf virus (BeYDV)-derived vector and Rep/RepA-supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co-expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built-in Rep/RepA cassette without P19 drove protein expression at similar levels as the three-component system. These results demonstrate the advantages of fast and high-level production of VLP-based vaccines using the BeYDV-derived DNA replicon system for transient expression in plants. Biotechnol. Bioeng. 2009;103: 706,714. © 2009 Wiley Periodicals, Inc. [source] |