Efferent Control (efferent + control)

Distribution by Scientific Domains


Selected Abstracts


ORIGINAL RESEARCH,BASIC SCIENCE: Neuroanatomical Evidence for a Role of Central Melanocortin-4 Receptors and Oxytocin in the Efferent Control of the Rodent Clitoris and Vagina

THE JOURNAL OF SEXUAL MEDICINE, Issue 6 2010
Helene Gelez PhD
ABSTRACT Introduction., The clitoris and the vagina are the main peripheral anatomical structures involved in physiological changes related to sexual arousal and orgasm. Their efferent control and, more particularly, the neurochemical phenotype of these descending neuronal pathways remain largely uncharacterized. Aim., To examine if brain neurons involved in the efferent control of the clitoris and the vagina possess melanocortin-4 receptor (MC4-R) and/or contain oxytocin (OT). Methods., Neurons involved in the efferent control of the vagina and clitoris were identified following visualization of pseudorabies virus (PRV) retrograde tracing. PRV was injected into the vagina and clitoris in adult rats in estrous. On the fifth day postinjection, animals were humanely sacrificed, and brains were removed and sectioned, and processed for PRV visualization. The neurochemical phenotype of PRV-positive neurons was identified using double or triple immunocytochemical labeling against PRV, MC4-R, and OT. Double and triple labeling were quantified using confocal laser scanning microscopy. Main Outcome Measure., Neuroanatomical brain distribution, number and percentage of double-labeled PRV/MC4-R and PRV-/OT-positive neurons, and triple PRV-/MC4-R-/OT-labeled neurons. Results., The majority of PRV immunopositive neurons which also expressed immunoreactivity for MC4-R were located in the paraventricular and arcuate nuclei of the hypothalamus. The majority of PRV positive neurons which were immunoreactive (IR) for OT were located in the paraventricular nucleus (PVN), medial preoptic area (MPOA), and lateral hypothalamus. PRV positive neurons were more likely to be IR for MC4-R than for OT. Scattered triple-labeled PRV/MC4-R/OT neurons were detected in the MPOA and the PVN. Conclusion., These data strongly suggest that MC4-R and, to a less extent, OT are involved in the efferent neuronal control of the clitoris and vagina, and consequently facilitate our understanding of how the melanocortinergic pathway regulates female sexual function. Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Alexandre L, and Giuliano F. Neuroanatomical evidence for a role of central melanocortin-4 receptors and oxytocin in the efferent control of the rodent clitoris and vagina. J Sex Med 2010;7:2056,2067. [source]


Peripheral synaptic contacts at mechanoreceptors in arachnids and crustaceans: Morphological and immunocytochemical characteristics

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2002
Ruth Fabian-Fine
Abstract Two types of sensory organs in crustaceans and arachnids, the various mechanoreceptors of spiders and the crustacean muscle receptor organs (MRO), receive extensive efferent synaptic innervation in the periphery. Although the two sensory systems are quite different,the MRO is a muscle stretch receptor while most spider mechanoreceptors are cuticular sensilla,this innervation exhibits marked similarities. Detailed ultrastructural investigations of the synaptic contacts along the mechanosensitive neurons of a spider slit sense organ reveal four important features, all having remarkable resemblances to the synaptic innervation at the MRO: (1) The mechanosensory neurons are accompanied by several fine fibers of central origin, which are presynaptic upon the mechanoreceptors. Efferent control of sensory function has only recently been confirmed electrophysiologically for the peripheral innervation of spider slit sensilla. (2) Different microcircuit configuration types, identified on the basis of the structural organization of their synapses. (3) Synaptic contacts, not only upon the sensory neurons but also between the efferent fibers themselves. (4) Two identified neurotransmitter candidates, GABA and glutamate. Physiological evidence for GABAergic and glutamatergic transmission is incomplete at spider sensilla. Given that the sensory neurons are quite different in their location and origin, these parallels are most likely convergent. Although their significance is only partially understood, mostly from work on the MRO, the close similarities seem to reflect functional constraints on the organization of efferent pathways in the brain and in the periphery. Microsc. Res. Tech. 58:283,298, 2002. © 2002 Wiley-Liss, Inc. [source]


Differential expression of PKC beta II in the rat organ of Corti

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
S. Ladrech
Abstract To investigate a possible involvement of protein kinase C (PKC) in cochlear efferent neurotransmission, we studied the expression of the calcium-dependent PKC beta II isoform in the rat organ of Corti at different postnatal ages using immunofluorescence and immunoelectron microscopy. We found evidence of PKC beta II as early as postnatal day (PND) 5 in efferent axons running in the inner spiral bundle and in Hensen cells. At PND 8, we also found PKC beta II in efferents targeting outer hair cells (OHCs), and a slight detection at the synaptic pole in the first row of the basal and middle cochlear turns. At PND 12, PKC beta II expression declined in the efferent fibres contacting OHCs, whereas expression was concentrated at the postsynaptic membrane, from the basal and middle turns. The adult-like pattern of PKC beta II distribution was observed at PND 20. Throughout the cochlea, we found PKC beta II expression in the Hensen cells, non-sensory cells involved in potassium re-cycling, and lateral efferent terminals of the inner spiral bundle. In addition, we observed expression in OHCs at the postsynaptic membrane facing the endings of the medial efferent system, with the exception of some OHCs located in the most apical region of the cochlea. These data therefore suggest an involvement of PKC beta II in both cochlear efferent neurotransmission and ion homeostasis. Among other functions, PKC beta II could play a role in the efferent control of OHC activity. [source]


ORIGINAL RESEARCH,BASIC SCIENCE: Neuroanatomical Evidence for a Role of Central Melanocortin-4 Receptors and Oxytocin in the Efferent Control of the Rodent Clitoris and Vagina

THE JOURNAL OF SEXUAL MEDICINE, Issue 6 2010
Helene Gelez PhD
ABSTRACT Introduction., The clitoris and the vagina are the main peripheral anatomical structures involved in physiological changes related to sexual arousal and orgasm. Their efferent control and, more particularly, the neurochemical phenotype of these descending neuronal pathways remain largely uncharacterized. Aim., To examine if brain neurons involved in the efferent control of the clitoris and the vagina possess melanocortin-4 receptor (MC4-R) and/or contain oxytocin (OT). Methods., Neurons involved in the efferent control of the vagina and clitoris were identified following visualization of pseudorabies virus (PRV) retrograde tracing. PRV was injected into the vagina and clitoris in adult rats in estrous. On the fifth day postinjection, animals were humanely sacrificed, and brains were removed and sectioned, and processed for PRV visualization. The neurochemical phenotype of PRV-positive neurons was identified using double or triple immunocytochemical labeling against PRV, MC4-R, and OT. Double and triple labeling were quantified using confocal laser scanning microscopy. Main Outcome Measure., Neuroanatomical brain distribution, number and percentage of double-labeled PRV/MC4-R and PRV-/OT-positive neurons, and triple PRV-/MC4-R-/OT-labeled neurons. Results., The majority of PRV immunopositive neurons which also expressed immunoreactivity for MC4-R were located in the paraventricular and arcuate nuclei of the hypothalamus. The majority of PRV positive neurons which were immunoreactive (IR) for OT were located in the paraventricular nucleus (PVN), medial preoptic area (MPOA), and lateral hypothalamus. PRV positive neurons were more likely to be IR for MC4-R than for OT. Scattered triple-labeled PRV/MC4-R/OT neurons were detected in the MPOA and the PVN. Conclusion., These data strongly suggest that MC4-R and, to a less extent, OT are involved in the efferent neuronal control of the clitoris and vagina, and consequently facilitate our understanding of how the melanocortinergic pathway regulates female sexual function. Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Alexandre L, and Giuliano F. Neuroanatomical evidence for a role of central melanocortin-4 receptors and oxytocin in the efferent control of the rodent clitoris and vagina. J Sex Med 2010;7:2056,2067. [source]