Home About us Contact | |||
Edible Films (edible + film)
Selected AbstractsRIPENING AND QUALITY CHANGES IN MANGO FRUIT AS AFFECTED BY COATING WITH AN EDIBLE FILMJOURNAL OF FOOD QUALITY, Issue 5 2000A. CARRILLO-LOPEZ ABSTRACT Mango fruit has a relatively short storage life of about 2 to 3 weeks at 13C. In order to prolong the storage life of ,Haden' mangoes, fruit were coated with 3 concentrations (8,16 and 24 g.L,1) of the edible coating film "Semperfresh" and then stored at 13C and 85% RH. Fruit were then evaluated every 4 days for up to 32 days for total soluble solids (TSS), titratable acidity (TA), pH, firmness, weight loss, color of the skin, and ascorbic acid content. All 3 concentrations applied to the fruit affected fruit ripening. TA, firmness, and green color were higher in coated fruit, and weight loss, SST, and pH were lower compared with the noncoated fruit. "Semperfresh" had no effect on decay development. Ascorbic acid decreased in all stored fruit, but this decrease was slower in coated fruit, and there were no significant differences between the different "Semperfresh" concentrations. [source] FILM FORMING MECHANISM AND MECHANICAL AND THERMAL PROPERTIES OF WHEY PROTEIN ISOLATE-BASED EDIBLE FILMS AS AFFECTED BY PROTEIN CONCENTRATION, GLYCEROL RATIO AND PULLULAN CONTENTJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2010MAHAMADOU ELHADJI GOUNGA ABSTRACT Tensile strength (TS), elongation at break (EAB) and elastic modulus (EM) of edible films prepared from 5, 7 and 9% whey protein isolate (WPI) plasticized with different levels of glycerol (Gly) (WPI : Gly = 3.6:1, 3:1 and 2:1) were investigated in order to completely characterize WPI-Gly films. On increasing protein concentration an increase in TS and EAB was observed. On the other hand, increasing Gly led to a decrease in TS and EM, while EAB increased. The addition of pullulan (Pul) into the film forming solution (FFS) increased EAB while TS, EM and thermal properties were reduced. This suggested that Pul had a similar effect as plasticizers. Films with higher Pul content showed lighter protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fourier transform infrared spectroscopy showed that hydrogen bonding was high in WPI : Pul films as compared with the control. This is attributed to the protein-polysaccharide interactions brought about by the dominance of Pul in the FFS. PRACTICAL APPLICATIONS This work describes some physical properties of films based on blends of whey protein isolate (WPI) and pullulan (Pul), made after a previous study on some characteristics of films based on pure WPI plasticized by glycerol. The most studied proteins in the edible films technology being gluten and WPI, the use of Pul in mixture with WPI is considered as a new investigation to explore the utilization of WPI-Pul in edible film and coating materials applied to food products. Furthermore, the use of WPI-Pul films and coatings could potentially extend the shelf life and improve the stability of the coated products as shown by the resultant properties in this investigation and previous works. [source] Enhancing Physical Properties and Antimicrobial Activity of Konjac Glucomannan Edible Films by Incorporating Chitosan and NisinJOURNAL OF FOOD SCIENCE, Issue 3 2006Bin Li ABSTRACT: The antimicrobial effect of konjac glucomannan (KGM) edible ûlm incorporating chitosan (CHI) and nisin at various ratios or concentrations was studied. This activity was tested against pathogenic bacteria, namely, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. Mechanical and physical properties were determined, and the results indicated that the blend film KC2 (mixing ratio KGM 80/ CHI 20) showed the maximum tensile strength (102.8 ± 3.8 MPa) and good transparency, water solubility, and water vapor transmission ratio. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structural change of the blend films; and the results showed that strong intermolecular hydrogen bonds occurred between CHI and KGM. Incorporation of nisin at 463IU per disk of film for the selected KC2 was found to have antimicrobial activity against S. aureus, L. monocytogenes, and B. cereus. The mean value of inhibition zone diameter of the CHI-N series and the KC2-N series were higher than the KGM-N series at each corresponding concentration and with significant difference (P < 0.05), however, there was no significant difference in the antimicrobial effect between CHI and KC2 incorporating nisin. At all these levels, the blend ûlm KC2-nisin had a satisfactory appearance, mechanical and physical properties, and antimicrobial activity. Therefore, it could be considered as a potential "active" packaging material. [source] Mechanical Properties, Water Vapor Permeabilities and Solubilities of Highly Carboxymethylated Starch-Based Edible FilmsJOURNAL OF FOOD SCIENCE, Issue 1 2002K.W. Kim ABSTRACT: Tensile strength (TS), elongation (E), water vapor permeabilities (WVP) and solubilities were determined for highly carboxymethylated starch (HCMS)-based edible films plasticized with sorbitol (S), xylitol (X), mannitol (M) and glycerol (G). TS and E of HCMS-based film increased as the concentration of plasticizer S, M or × increased. TS of the HCMS-based film containing combined plasticizers were higher than those of films containing single plasticizer. The WVP of HCMS-based films seemed to decreased as the concentration of M, X or G plasticizer increased. Increasing plasticizer concentrations in HCMS-based film resulted in decreasing solubility of the films. [source] Thermal Properties, Heat Sealability and Seal Attributes of Whey Protein Isolate/ Lipid Emulsion Edible FilmsJOURNAL OF FOOD SCIENCE, Issue 7 2001S-J. Kim ABSTRACT: From 5% w/v whey protein isolate (WPI), whey protein/lipid emulsion edible films were produced that were sorbitol- or glycerol-plasticized, containing butterfat (0.2% w/v) or candelilla wax (0.8% w/v). Thermal properties of the films determined by Differential Scanning Calorimetry (DSC) showed onset temperatures (To) of 126 to 127 °C for sorbitol- and 108 to 122 °C for glycerol-plasticized films. To values were used as the basis for heat sealing temperatures. Temperature (110, 120, 130 °C), pressure (296,445 kPa), and dwell time (1,3 s) affected seal strength. Optimum heat sealing temperature was 130 °C for sorbitol- and 110 °C for glycerol-plasticized films. All films were heat sealable with an impulse heat-sealer. Electron Spectroscopy for Chemical Analysis (ESCA) of the surfaces of both sealed and unsealed films showed increase in hydrogen and covalent bonds involving C-O-H and N-C, which may be the main forces responsible for the sealed joint formation of the films. [source] Moisture adsorption by milk whey protein filmsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 3 2002C. M. P. Yoshida Edible films, using whey protein as the structural matrix, were tested for water vapour diffusion properties. Whey protein films were prepared by dispersing 6.5% whey protein concentrate (WPC) in distilled water with pH kept at 7.0. Glycerol was the plasticizer agent. Film slabs (13.5 × 3.5 cm) were put in a chamber at 25 °C and 75% relative humidity, being held in vertical planes for different periods of time. The mass gain was determined throughout the experiment. We show that moisture adsorption by milk whey protein films is well described by a linear diffusion equation model. After an adsorption experiment was performed the solution of the diffusion equation was fitted to the data to determine the diffusion coefficient of the material. [source] FILM FORMING MECHANISM AND MECHANICAL AND THERMAL PROPERTIES OF WHEY PROTEIN ISOLATE-BASED EDIBLE FILMS AS AFFECTED BY PROTEIN CONCENTRATION, GLYCEROL RATIO AND PULLULAN CONTENTJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2010MAHAMADOU ELHADJI GOUNGA ABSTRACT Tensile strength (TS), elongation at break (EAB) and elastic modulus (EM) of edible films prepared from 5, 7 and 9% whey protein isolate (WPI) plasticized with different levels of glycerol (Gly) (WPI : Gly = 3.6:1, 3:1 and 2:1) were investigated in order to completely characterize WPI-Gly films. On increasing protein concentration an increase in TS and EAB was observed. On the other hand, increasing Gly led to a decrease in TS and EM, while EAB increased. The addition of pullulan (Pul) into the film forming solution (FFS) increased EAB while TS, EM and thermal properties were reduced. This suggested that Pul had a similar effect as plasticizers. Films with higher Pul content showed lighter protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fourier transform infrared spectroscopy showed that hydrogen bonding was high in WPI : Pul films as compared with the control. This is attributed to the protein-polysaccharide interactions brought about by the dominance of Pul in the FFS. PRACTICAL APPLICATIONS This work describes some physical properties of films based on blends of whey protein isolate (WPI) and pullulan (Pul), made after a previous study on some characteristics of films based on pure WPI plasticized by glycerol. The most studied proteins in the edible films technology being gluten and WPI, the use of Pul in mixture with WPI is considered as a new investigation to explore the utilization of WPI-Pul in edible film and coating materials applied to food products. Furthermore, the use of WPI-Pul films and coatings could potentially extend the shelf life and improve the stability of the coated products as shown by the resultant properties in this investigation and previous works. [source] Application of,Gelidium corneum,Edible Films Containing Carvacrol for Ham PackagesJOURNAL OF FOOD SCIENCE, Issue 1 2010G.O. Lim ABSTRACT:, We prepared an edible film of,Gelidium corneum,(GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against,Escherichia coli,O157:H7 and,Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life. [source] Solubility and mechanical properties of heat-cured whey protein-based edible films compared with that of collagen and natural casingsINTERNATIONAL JOURNAL OF DAIRY TECHNOLOGY, Issue 2 2007S AMIN Water solubility, tensile strength (TS), wet strength (WS) and elongation at break (%E) of whey protein isolate (WPI) films were compared to that of collagen films and natural casings. Increase in heat-curing temperature and time caused decreased (P < 0.001) water solubility and increased TS and WS of the films. Heat-cured WPI films with similar properties (solubility, TS, WS and %E) to collagen films were obtained by optimizing heat-curing conditions. Overall, natural casings had lower solubility, TS and %E but higher WS than collagen and heat-cured WPI films. Heat-cured WPI films have the potential as an alternative to collagen films and casings. [source] Rice bran protein-based edible filmsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 3 2008Abayomi P. Adebiyi Summary The development of degradable and edible films from protein sources has drawn significant attention for the utilisation of natural resources as well as for the alleviation of the environmental burden. Rice bran protein (RBP) was applied to protein film preparation in this study. The protein solutions were casted on plastic tissue culture dishes with glycerol as a plasticiser after heat treatment. Functional properties of the films were then measured. The puncture strength (PS) of RBP films increased up to pH 8.0 and then decreased. PS of protein films depends on the degree of protein purity, quality and composition. Higher concentration of glycerol weakened the films. The pH affected the water solubility of RBP films and the films showed least solubility at pH 3.0. RBP could be utilised in the preparation of degradable protein-based films. The RBP-based film had functional properties comparable to those of the soy protein-based ones. [source] FILM FORMING MECHANISM AND MECHANICAL AND THERMAL PROPERTIES OF WHEY PROTEIN ISOLATE-BASED EDIBLE FILMS AS AFFECTED BY PROTEIN CONCENTRATION, GLYCEROL RATIO AND PULLULAN CONTENTJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2010MAHAMADOU ELHADJI GOUNGA ABSTRACT Tensile strength (TS), elongation at break (EAB) and elastic modulus (EM) of edible films prepared from 5, 7 and 9% whey protein isolate (WPI) plasticized with different levels of glycerol (Gly) (WPI : Gly = 3.6:1, 3:1 and 2:1) were investigated in order to completely characterize WPI-Gly films. On increasing protein concentration an increase in TS and EAB was observed. On the other hand, increasing Gly led to a decrease in TS and EM, while EAB increased. The addition of pullulan (Pul) into the film forming solution (FFS) increased EAB while TS, EM and thermal properties were reduced. This suggested that Pul had a similar effect as plasticizers. Films with higher Pul content showed lighter protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fourier transform infrared spectroscopy showed that hydrogen bonding was high in WPI : Pul films as compared with the control. This is attributed to the protein-polysaccharide interactions brought about by the dominance of Pul in the FFS. PRACTICAL APPLICATIONS This work describes some physical properties of films based on blends of whey protein isolate (WPI) and pullulan (Pul), made after a previous study on some characteristics of films based on pure WPI plasticized by glycerol. The most studied proteins in the edible films technology being gluten and WPI, the use of Pul in mixture with WPI is considered as a new investigation to explore the utilization of WPI-Pul in edible film and coating materials applied to food products. Furthermore, the use of WPI-Pul films and coatings could potentially extend the shelf life and improve the stability of the coated products as shown by the resultant properties in this investigation and previous works. [source] EFFECT OF OLIVE OIL AND GLYCEROL ON PHYSICAL PROPERTIES OF WHEY PROTEIN CONCENTRATE FILMSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2008MAJID JAVANMARD ABSTRACT Olive oil was incorporated into whey protein through emulsification to produce films. Whey protein films were prepared by dispersing 10% protein in distilled water; and plasticized with different levels of glycerol (glycerol : protein [Gly : pro ] = 0.5 and 0.6). Olive oil was added at different levels (oil : pro = 0.0, 0.2, 0.3 and 0.4). The emulsion films were evaluated for mechanical properties, water vapor permeability (WVP) and opacity. Increasing the levels of Gly or olive oil in the films led to decreases in modulus and tensile strength. Increasing Gly content of films at oil/pro ratios of 0.2, 0.4 led to slight increases in elongation (EL). Increasing the oil : pro ratio further resulted in a decrease in EL for all films. No significant difference in WVP and opacity was observed between films made from mixtures of various proportions of whey protein concentrate,Gly with increasing olive oil (addition) at all levels of the plasticizer. PRACTICAL APPLICATIONS The main advantages of using edible films are extending food shelf life, improving food quality, adding value to the edible film-forming polymer and reducing synthetic packaging materials. Whey, obtained as a by-product in cheese, is produced in large quantities and has excellent functional properties and could potentially be used for edible films. [source] EFFECT OF GLYCEROL ON PHYSICAL PROPERTIES OF CASSAVA STARCH FILMSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2010P. BERGO ABSTRACT In this work, the effect of glycerol on the physical properties of edible films were identified by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared (FTIR) and microwave spectroscopy. According to XRD diffractograms, films with 0 and 15% glycerol displayed an amorphous character, and a tendency to semicrystallization, for films with 30% and 45% glycerol. From DSC thermograms, the glass transition (Tg) of the films decreased with glycerol content. However, two Tgs were observed for samples with 30% and 45% glycerol, due to a phase separation. The intensity and positions of the peaks in FTIR fingerprint region presented slight variations due to new interactions arising between glycerol and biopolymer. Microwave measurements were sensitive to moisture content in the films, due to hydrophilic nature of the glycerol. The effect of plasticizer plays, then, an important rule on the physical and functional properties of these films, for applications in food technology. PRACTICAL APPLICATIONS Edible and/or biodegradable films are thin materials used mainly in food recovering, food packaging and other applications, in substitution of the films obtained by synthetic ways. In view of these applications, these films must satisfy some of the exigencies in order to increase the food shelf-life, or in other words, they must be flexible, transparent, resistant to some gases such as oxygen, as well as resistant to water vapor. The addition of plasticizers alters the functional properties of the films. Thus, the physical characterization of these films becomes fundamental in order to increase their potential use in industry. [source] EFFECT OF POLYGODIAL ON MECHANICAL, OPTICAL AND BARRIER PROPERTIES OF CHITOSAN FILMSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2 2010L. MORENO-OSORIO ABSTRACT The mechanical, optical and barrier properties of chitosan films containing polygodial (0.0, 2.7, 13.9, 25.0 mg/g of chitosan) were studied. Water vapor permeability (WVP), tensile strength, percentage elongation at break, CIELab color parameters, hue angle and chroma of films were determined. Fourier transform infrared (FTIR) was also performed to determine functional group interaction between the matrix and polygodial added. The use of polygodial resulted in stronger films without losing their extensibility and with low WVP. Films became darker with yellow-green coloration with increasing polygodial concentration. Polygodial added to chitosan films did not have any interaction with the amino groups of chitosan as measured by FTIR. Polygodial as a natural dialdehyde can effectively be applied to enhance some physical properties of edible films prepared with chitosan. PRACTICAL APPLICATIONS There has been an increased interest in the study of edible,biodegradable packaging films during the last decade, offering an alternative and partial solution to the problem of accumulation of solid waste composed of synthetic inert polymers, and chitosan films has been studied with this purpose. Furthermore, replacing synthetic additives by natural compounds such us polygodial can be a suitable manner to improve some physical properties of those chitosan films. [source] Antibacterial Effects of Allspice, Garlic, and Oregano Essential Oils in Tomato Films Determined by Overlay and Vapor-Phase MethodsJOURNAL OF FOOD SCIENCE, Issue 7 2009W-X. Du ABSTRACT:, Physical properties as well as antimicrobial activities against,Escherichia coli,O157:H7,,Salmonella enterica, and,Listeria monocytogenes,of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil.,Listeria monocytogenes,was less resistant to EO vapors, while,E. coli,O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films. [source] Effects of Water-Glycerol and Water-Sorbitol Interactions on the Physical Properties of Konjac Glucomannan FilmsJOURNAL OF FOOD SCIENCE, Issue 2 2006Lai Hoong Cheng ABSTRACT Konjac glucomannan (KGM)-edible films were prepared with different amounts of glycerol or sorbitol as a plasticizer. Films were characterized by moisture sorption isotherm, and following conditioning at different relative humidities, by differential scanning calorimetry and tensile tests. Moisture and polyols (sorbitol and glycerol) were found to plasticize KGM-based films with respect to their tensile properties. However, thermal properties and water sorption capacity (WSC) of polyolplasticized KGM films were found to vary with water activity (aw), namely at low aw (< 0.6), WSC and melting enthalpy were decreased with increasing in polyol content and the opposite was true at higher aw (>0.6). This was attributed to extensive interactions between plasticizer and KGM that reduced the available active site (-OH groups) for water adsorption. The presence of polyols at low aw appeared to suppress crystalline structures due probably to restricted molecular mobility. These effects were diminished when the moisture content was >20%. [source] Mechanical Properties, Water Vapor Permeabilities and Solubilities of Highly Carboxymethylated Starch-Based Edible FilmsJOURNAL OF FOOD SCIENCE, Issue 1 2002K.W. Kim ABSTRACT: Tensile strength (TS), elongation (E), water vapor permeabilities (WVP) and solubilities were determined for highly carboxymethylated starch (HCMS)-based edible films plasticized with sorbitol (S), xylitol (X), mannitol (M) and glycerol (G). TS and E of HCMS-based film increased as the concentration of plasticizer S, M or × increased. TS of the HCMS-based film containing combined plasticizers were higher than those of films containing single plasticizer. The WVP of HCMS-based films seemed to decreased as the concentration of M, X or G plasticizer increased. Increasing plasticizer concentrations in HCMS-based film resulted in decreasing solubility of the films. [source] Thermal Properties, Heat Sealability and Seal Attributes of Whey Protein Isolate/ Lipid Emulsion Edible FilmsJOURNAL OF FOOD SCIENCE, Issue 7 2001S-J. Kim ABSTRACT: From 5% w/v whey protein isolate (WPI), whey protein/lipid emulsion edible films were produced that were sorbitol- or glycerol-plasticized, containing butterfat (0.2% w/v) or candelilla wax (0.8% w/v). Thermal properties of the films determined by Differential Scanning Calorimetry (DSC) showed onset temperatures (To) of 126 to 127 °C for sorbitol- and 108 to 122 °C for glycerol-plasticized films. To values were used as the basis for heat sealing temperatures. Temperature (110, 120, 130 °C), pressure (296,445 kPa), and dwell time (1,3 s) affected seal strength. Optimum heat sealing temperature was 130 °C for sorbitol- and 110 °C for glycerol-plasticized films. All films were heat sealable with an impulse heat-sealer. Electron Spectroscopy for Chemical Analysis (ESCA) of the surfaces of both sealed and unsealed films showed increase in hydrogen and covalent bonds involving C-O-H and N-C, which may be the main forces responsible for the sealed joint formation of the films. [source] Ferulic acid: pharmaceutical functions, preparation and applications in foodsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 11 2004Shiyi Ou Abstract Ferulic acid (4-hydroxy-3-methoxycinnamic acid), an effective component of Chinese medicine herbs such as Angelica sinensis, Cimicifuga heracleifolia and Lignsticum chuangxiong, is a ubiquitous phenolic acid in the plant kingdom. It is mainly conjugated with mono- and oligosaccharides, polyamines, lipids and polysaccharides and seldom occurs in a free state in plants. Ferulic acid is a phenolic acid of low toxicity; it can be absorbed and easily metabolized in the human body. Ferulic acid has been reported to have many physiological functions, including antioxidant, antimicrobial, anti-inflammatory, anti-thrombosis, and anti-cancer activities. It also protects against coronary disease, lowers cholesterol and increases sperm viability. Because of these properties and its low toxicity, ferulic acid is now widely used in the food and cosmetic industries. It is used as the raw material for the production of vanillin and preservatives, as a cross-linking agent for the preparation of food gels and edible films, and as an ingredient in sports foods and skin protection agents. Ferulic acid can be prepared by chemical synthesis and through biological transformation. As polysaccharide ferulate is a natural and abundant source of ferulic acid, preparation of ferulic acid from plant cell wall materials will be a prospective pathway. Copyright © 2004 Society of Chemical Industry [source] Physicochemical properties and application of pullulan edible films and coatings in fruit preservationJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2001Tony Diab Abstract The effects of water, sorbitol and a sucrose fatty acid ester (SE) on the water sorption behaviour and thermal and mechanical properties of pullulan-based edible films as well as the physiological responses of fruit coated with pullulan have been studied. Incorporation of sorbitol or SE in pullulan films resulted in lower equilibrium moisture contents at low to intermediate water activities (aw), but much higher moisture contents at aw,>,0.75; estimates of monolayer values (within 4.1,5.9,gH2O,kg,1 solids) were given by application of the Brunauer,Emmett,Teller (BET) and Guggenheim,Anderson,DeBoer (GAB) models. A single glass,rubber transition (Tg), attributed to the polysaccharide component, was detected by calorimetry and dynamic mechanical thermal analysis (DMTA) at a sorbitol level of 15,30% DM. With both tests the strong plasticising action of water and polyol was evident in the thermal curves, and the Tg vs moisture content data were successfully fitted to the Gordon,Taylor empirical model. Multifrequency DMTA measurements provided estimates for the apparent activation energy of the glass transition in the range of , 300,488,kJ,mol,1. With large-deformation mechanical testing, large decreases in Young's moduli (tensile and three-point bend tests) were observed as a result of water- and/or polyol-mediated glass-to-rubber transition of the polymeric films. In the moisture content range of 2,8%, increases in flexural modulus (E) and maximum stress (,max) with small increases in moisture content were found for films made of pullulan or pullulan mixed with 15% DM sorbitol; a strong softening effect was observed when the water content exceeded this range. Addition of sorbitol increased the water vapour transmission rate of the films, whereas addition of SE had the opposite effect. Application of a pullulan/sorbitol/SE coating on strawberries resulted in large changes in internal fruit atmosphere composition which were beneficial for extending the shelf-life of this fruit; the coated fruit showed much higher levels of CO2, a large reduction in internal O2, better firmness and colour retention and a reduced rate of weight loss. In contrast, similar studies on whole kiwifruits showed increased levels of internal ethylene, which caused acceleration of fruit ripening during storage. © 2001 Society of Chemical Industry [source] Physical properties of edible films based on cassava starch as affected by the plasticizer concentrationPACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2008P. V. A. Bergo Abstract The aim of this work was to investigate the effect of glycerol contents on physical properties of cassava starch films. The films were prepared from film-forming solutions (FFS) with 2g cassava starch/100g water and 0, 15, 30 and 45g glycerol/100g starch, and were analysed to determine its mechanical properties by tensile tests, the glass-transition temperature (Tg) by differential scanning calorimetry (DSC) and the crystallinity by X-ray diffraction (XRD). The infrared spectra of the films were also recorded. The resistance values of the films decreased, while those of the elasticity increased with an increase in glycerol concentration due to the plasticizer effect of glycerol, which was also observed in DSC curves. The Tg of the films prepared decreased with the glycerol content. However, for samples with 30 and 45g glycerol/100g starch, two Tg curves were observed, probably due to a phase separation phenomenon. According to the XRD diffractograms, the films with 0 and 15gglycerol/100g starch presented an amorphous character, but some tendency to show crystalline peaks were observed for films with 30 and 45g glycerol/100g starch. The results obtained with Fourier transform infrared (FTIR) corroborated these observations. Copyright © 2007 John Wiley & Sons, Ltd. [source] |