Home About us Contact | |||
Edge Region (edge + region)
Selected AbstractsFast Reciprocating Probe Assembly for the KSTARCONTRIBUTIONS TO PLASMA PHYSICS, Issue 5-6 2006J. G. Bak Abstract A fast reciprocating probe assembly (FRPA) that can scan a distance of up to 32.5 cm with a maximum speed of 1.7 m/s was fabricated to obtain the spatial profile of basic plasma parameters in the edge region of the KSTAR plasma during a plasma discharge of 20 s. The probe driving mechanism consists of two parts; first a slow movement driven by a servo motor system and then a fast reciprocating movement actuated by a pneumatic system. A performance test of the drive system, which is remotely controlled by a PC, was carried out. The prototype of the probe head for the KSTAR FRPA was fabricated as a modular type for easy replacement. It was installed in the fast injection probe assembly (FIPA) in the Hanbit magnetic mirror device, and a radial plasma parameter profile measurement was carried out. The performance test results of the drive system and the profile measurements using the probe head are presented. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Full f particle simulation method for solution of transient edge phenomenaCONTRIBUTIONS TO PLASMA PHYSICS, Issue 1-3 2004J. A. Heikkinen An electrostatic gyrokinetic guiding-centre particle code is described where electrons and ions are simultaneously followed in the edge region. Full f technique is used for particle sampling and loading to allow efficient treatment of strong time variation in the collisional edge bulk plasma. Both the gyrokinetic ion polarization term and the implicit electron term in the quasi-neutrality condition are determined based on the full-f sampling for both electrons and ions. Issues relevant for the SOL modeling like recycling, heat source, and boundary conditions for plasma/wall interaction are discussed. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Heat transfer in high-aspect-ratio rectangular passage with skewed ribsHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2002Takanari Okamura Abstract The heat transfer characteristics and flow behavior in a rectangular passage with two opposite 45° skewed ribs for turbine rotor blade have been investigated for Reynolds numbers from 7800 to 19,000. In this blade, the spanwise coolant passage at the trailing edge region whose thickness is very thin is chosen, so the channel aspect ratio (=width/height of channel) is extremely high, 4.76. Therefore the heat transfer experiment in the high-aspect-ratio cooling channel was performed using thermochromic liquid crystal and thermocouples. Furthermore, the calculation of flow and heat transfer was carried out using CFD analysis code to understand the heat transfer experimental results. The enhanced heat transfer coefficients on the smooth side wall at the rib's leading end were the same level as those on the rib-roughened walls. © 2002 Scripta Technica, Heat Trans Asian Res, 31(2): 89,104, 2002; DOI 10.1002/htj.10018 [source] Effect of incidence angle with wake passing on a film cooled leading edge: A numerical studyINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2010F. Montomoli Abstract This work presents the numerical study of a film-cooled blade under the influence of wake passing at different incidence angles. The film cooling technology has been proven to be effective to increase the blade life of first turbine stages. However, the leading edge is affected by an high heat transfer rate and cooling this region is difficult. Moreover, separated regions downstream the coolant injection increases the local heat transfer coefficient and can have a detrimental effect in terms of airfoil life. This work analyses how the flow field is affected by the wake passing at different incidence angles (,5, 0, 5) and the impact on heat transfer coefficient. The test case is a linear cascade with two rows of cylindrical holes at the leading edge. Two different holes arrangements are compared in terms of film cooling structures, namely AGTB-B1 and AGTB-B2 with 0 and 45, spanwise inclination. The numerical results show a good agreement with the experiments. A deeper investigation is carried out on AGTB-B1. The results obtained show that the wake passing and the incidence angle have a strong effect on coolant jets. In particular, there is a significative impact on coolant redistribution near the leading edge. The wake passing has a stronger effect on pressure side, mainly at negative incidence. The predictive approach is based on an U-RANS in-house CFD solver using a conventional two-equations closure. In order to avoid extra turbulence production, critical in the leading edge region, the turbulence model incorporates an extra algebraic equation that enforces a realizability constraint. The unsteady formulation is based on a dual time stepping approach with a sliding plane between the moving bars and the cascade. Copyright © 2009 John Wiley & Sons, Ltd. [source] Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 7 2006M. Terauchi Abstract Electronic structures of boron-nitride (BN) nanotubes and a BN cone-structure material were studied by using a high energy-resolution electron energy-loss spectroscopy (EELS) microscope. A trial of the whole electronic structure study of hexagonal BN (h-BN), which consists of flat BN honeycomb layers, was conducted by a combination of EELS and X-ray emission spectroscopy (XES) based on transmission electron microscopy (TEM) (TEM-EELS/XES). The , and ,+, plasmon energies of BN nanotubes (BNT) were smaller than those of h-BN. The ,+, energy was explained by the surface plasmon excitation. The spectrum of a two-wall BNT of 2.7 nm in diameter showed a new spectral onset at 4 eV. The valence electron excitation spectra obtained from the tip region of the BN cone with an apex angle of 20° showed similar intensity distribution with those of BNTs. The B K-shell electron excitation spectra obtained from the bottom edge region of the BN cone showed additional peak intensity when compared with those of h-BN and BNT. The B K-shell electron excitation spectra and B K-emission spectra of h-BN were compared with a result of a LDA band calculation. It showed that high symmetry points in the band diagram appear as peak and/or shoulder structures in the EELS and XES spectra. Interband transitions appeared in the imaginary part of the dielectric function of h-BN experimentally obtained were assigned in the band diagram. The analysis also presented that the LDA calculation estimated the bandgap energy smaller than the real material by an amount of 2 eV. Those results of TEM-EELS/XES analysis presented that high energy-resolution spectroscopy methods combined with TEM is a promising method to analyze whole electronic structures of nanometer scale materials. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source] |