Eddy Viscosity (eddy + viscosity)

Distribution by Scientific Domains


Selected Abstracts


Magnetic and viscous coupling at the core,mantle boundary: inferences from observations of the Earth's nutations

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2007
B. A. Buffett
SUMMARY Dissipative core,mantle coupling is evident in observations of the Earth's nutations, although the source of this coupling is uncertain. Magnetic coupling occurs when conducting materials on either side of the boundary move through a magnetic field. In order to explain the nutation observations with magnetic coupling, we must assume a high (metallic) conductivity on the mantle side of the boundary and a rms radial field of 0.69 mT. Much of this field occurs at short wavelengths, which cannot be observed directly at the surface. High levels of short-wavelength field impose demands on the power needed to regenerate the field through dynamo action in the core. We use a numerical dynamo model from the study of Christensen & Aubert (2006) to assess whether the required short-wavelength field is physically plausible. By scaling the numerical solution to a model with sufficient short-wavelength field, we obtain a total ohmic dissipation of 0.7,1 TW, which is within current uncertainties. Viscous coupling is another possible explanation for the nutation observations, although the effective viscosity required for this is 0.03 m2 s,1 or higher. Such high viscosities are commonly interpreted as an eddy viscosity. However, physical considerations and laboratory experiments limit the eddy viscosity to 10,4 m2 s,1, which suggests that viscous coupling can only explain a few percent of the dissipative torque between the core and the mantle. [source]


A dynamic approach for evaluating parameters in a numerical method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2005
A. A. Oberai
Abstract A new methodology for evaluating unknown parameters in a numerical method for solving a partial differential equation is developed. The main result is the identification of a functional form for the parameters which is derived by requiring the numerical method to yield ,optimal' solutions over a set of finite-dimensional function spaces. The functional depends upon the numerical solution, the forcing function, the set of function spaces, and the definition of the optimal solution. It does not require exact or approximate analytical solutions of the continuous problem, and is derived from an extension of the variational Germano identity. This methodology is applied to the one-dimensional, linear advection,diffusion problem to yield a non-linear dynamic diffusivity method. It is found that this method yields results that are commensurate to the SUPG method. The same methodology is then used to evaluate the Smagorinsky eddy viscosity for the large eddy simulation of the decay of homogeneous isotropic turbulence in three dimensions. In this case the resulting method is found to be more accurate than the constant-coefficient and the traditional dynamic versions of the Smagorinsky model. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Godunov-type adaptive grid model of wave,current interaction at cuspate beaches

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2004
Benedict D. Rogers
Abstract This paper presents a second-order accurate Godunov-type numerical scheme for depth- and period-averaged wave,current interaction. A flux Jacobian is derived for the wave conservation equations and its eigensystem determined, enabling Roe's approximate Riemann solver to be used to evaluate convective fluxes. Dynamically adaptive quadtree grids are used to focus on local hydrodynamic features, where sharp gradients occur in the flow variables. Adaptation criteria based on depth-averaged vorticity, wave-height gradient, wave steepness and the magnitude of velocity gradients are found to produce accurate solutions for nearshore circulation at a half-sinusoidal beach. However, the simultaneous combination of two or more separate criteria produces numerical instability and interference unless all criteria are satisfied for mesh depletion. Simulations of wave,current interaction at a multi-cusped beach match laboratory data from the United Kingdom Coastal Research Facility (UKCRF). A parameter study demonstrates the sensitivity of nearshore flow patterns to changes in relative cusp height, angle of wave incidence, bed roughness, offshore wave height and assumed turbulent eddy viscosity. Only a small deviation from normal wave incidence is required to initiate a meandering longshore current. Nearshore circulation patterns are highly dependent on the offshore wave height. Reduction of the assumed eddy viscosity parameter causes the primary circulation cells for normally incident waves to increase in strength whilst producing rip-like currents cutting diagonally across the surf zone. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Large eddy simulation of turbulent concentric annular channel flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2004
Nan-Sheng Liu
Abstract Fully developed turbulent concentric annular channel flow has been investigated numerically by use of large eddy simulation (LES) technique coupled with a localized one-equation dynamic subgrid-scale (SGS) model. The objective of this study is to deal with the behaviour of turbulent flow near the inner and outer walls of the concentric annular channel and to examine the effectiveness of LES technique for predicting the turbulent flow influenced by the transverse curvature effect. The computations are performed for the Reynolds number Re,=180, 395 and 640, based on an averaged friction velocity and the annular channel width with the inner and outer cylinder radius being Ri=1 and Ro=2. To validate the present approach, calculated results for turbulent pipe flow and concentric annular channel flow are compared with available experimental data and direct numerical simulation results, which confirms that the present approach can be used to study turbulent concentric annular channel flow satisfactorily. To elucidate turbulence characteristics in the concentric annular channel, some typical quantities, including the resolved velocity, turbulence intensity, turbulent eddy viscosity, SGS kinetic energy, SGS dissipation rate, Reynolds stress budgets, and turbulence structures based on the velocity fluctuations, are analysed. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 579 2002
Sergej Zilitinkevich
Abstract Refined diagnostic and prognostic equations for the depth of the stably stratified barotropic Ekman boundary later (SBL) are derived employing a recently developed non-local formulation for the eddy viscosity. In well-studied cases of the thoroughly neutral SBL, the nocturnal atmospheric SBL and the oceanic SBL dominantly affected by the static stability in the thermocline, the proposed diagnostic equation reduces to the Rossby,Montgomery, Zilitinkevich and Pollard,Rhines,Thompson equations, respectively. In its general form it is applicable to a range of regimes including long-lived atmospheric SBLs affected by the near-surface buoyancy flux and the static stability in the free atmosphere. Both diagnostic and prognostic SBL depth equations are validated against recent data from atmospheric measurements. Copyright © 2002 Royal Meteorological Society. [source]


Tayler instability of toroidal magnetic fields in MHD Taylor-Couette flows

ASTRONOMISCHE NACHRICHTEN, Issue 1 2010
G. Rüdiger
Abstract The nonaxisymmetric Tayler instability (TI) of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two infinitely long corotating cylinders. For given Reynolds number of rotation the magnetic Prandtl number Pm of the liquid conductor and the ratio of the cylinder's rotation rates are the free parameters. It is shown that for resting cylinders the critical Hartmann number for instability does not depend on Pm hence the TI also exists in the limit Pm , 0. By rigid rotation the instability is suppressed where for Pm = 1 the rotational quenching takes its maximum. Rotation laws with negative shear (i.e. d, /dR < 0) strongly destabilize the toroidal field if the rotation is not too fast. In galaxies with their quadrupolar magnetic field geometry this effect could have drastic implications. For sufficiently high Reynolds numbers of rotation, however, the TI completely disappears. For the considered magnetic constellation the superrotation laws support the rotational stabilization. The angular momentum transport of the instability is anticorrelated with the shear so that an eddy viscosity can be defined which proves to be positive. We have also shown the possibility of laboratory TI experiments with a wide-gap container filled with fluid metals like sodium or gallium. Even the effect of the rotational stabilization can be reproduced in the laboratory with electric currents of only a few kA (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Simulation of Turbulent Flow in a Packed Bed

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2006
B. Guo
Abstract Numerous models for simulating the flow and transport in packed beds have been proposed in the literature with few reported applications. In this paper, several turbulence models for porous media are applied to the gas flow through a randomly packed bed and are examined by means of a parametric study against some published experimental data. These models predict widely different turbulent eddy viscosity. The analysis also indicates that deficiencies exist in the formulation of some model equations and selection of a suitable turbulence model is important. With this realization, residence time distribution and velocity distribution are then simulated by considering a radial profile of porosity and turbulence induced dispersion, and the results are in good agreement with the available experimental data. [source]