Eddy Covariance Data (eddy + covariance_data)

Distribution by Scientific Domains


Selected Abstracts


Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions

GLOBAL CHANGE BIOLOGY, Issue 4 2007
KATHERINE E. OWEN
Abstract This paper examines long-term eddy covariance data from 18 European and 17 North American and Asian forest, wetland, tundra, grassland, and cropland sites under non-water-stressed conditions with an empirical rectangular hyperbolic light response model and a single layer two light-class carboxylase-based model. Relationships according to ecosystem functional type are demonstrated between empirical and physiological parameters, suggesting linkages between easily estimated parameters and those with greater potential for process interpretation. Relatively sparse documentation of leaf area index dynamics at flux tower sites is found to be a major difficulty in model inversion and flux interpretation. Therefore, a simplification of the physiological model is carried out for a subset of European network sites with extensive ancillary data. The results from these selected sites are used to derive a new parameter and means for comparing empirical and physiologically based methods across all sites, regardless of ancillary data. The results from the European analysis are then compared with results from the other Northern Hemisphere sites and similar relationships for the simplified process-based parameter were found to hold for European, North American, and Asian temperate and boreal climate zones. This parameter is useful for bridging between flux network observations and continental scale spatial simulations of vegetation/atmosphere carbon dioxide exchange. [source]


Net regional ecosystem CO2 exchange from airborne and ground-based eddy covariance, land-use maps and weather observations

GLOBAL CHANGE BIOLOGY, Issue 3 2007
F. MIGLIETTA
Abstract Measurements of regional net ecosystem exchange (NEE) were made over a period of 21 days in summer 2002 in the South-Central part of the Netherlands and extrapolated to an area of 13 000 km2 using a combination of flux measurements made by a Sky Arrow ERA research aircraft, half-hourly eddy covariance data from four towers, half-hourly weather data recorded by three weather stations and detailed information on regional land use. The combination of this type of information allowed to estimate the net contribution of the terrestrial ecosystems to the overall regional carbon flux and to map dynamically the temporal and spatial variability of the fluxes. A regional carbon budget was calculated for the study period and the contributions of the different land uses to the overall regional flux, were assessed. Ecosystems were, overall, a small source of carbon to the atmosphere equivalent to to 0.23±0.025 g C m,2 day,1. When considered separately, arable and grasslands were a source of, respectively, 0.68±0.022 and 1.28±0.026 g C m,2 day,1. Evergreen and deciduous forests were instead a sink of ,1.42±0.015 g C m,2 day,1. During the study period, forests offset approximately 3.5% of anthropogenic carbon emission estimates obtained from inventory data. Lacking of a robust validation, NEE values obtained with this method were compared with independent state of art estimates of the regional carbon balance that were obtained by applying a semi-empirical model of NEE driven by MODIS satellite fAPAR data. The comparison showed an acceptable matching for the carbon balance of forest that was a sink in both cases, while a much larger difference for arable and grassland was found. Those ecosystems were a sink for satellite-based estimates while they were a source for the combined aircraft and tower estimates. Possible causes of such differences are discussed and partly addressed. The importance of new methods for determining carbon balance at the regional scale, is outlined. [source]


Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations

GLOBAL CHANGE BIOLOGY, Issue 2 2005
Bobby H. Braswell
Abstract We performed a synthetic analysis of Harvard Forest net ecosystem exchange of CO2 (NEE) time series and a simple ecosystem carbon flux model, the simplified Photosynthesis and Evapo-Transpiration model (SIPNET). SIPNET runs at a half-daily time step, and has two vegetation carbon pools, a single aggregated soil carbon pool, and a simple soil moisture sub-model. We used a stochastic Bayesian parameter estimation technique that provided posterior distributions of the model parameters, conditioned on the observed fluxes and the model equations. In this analysis, we estimated the values of all quantities that govern model behavior, including both rate constants and initial conditions for carbon pools. The purpose of this analysis was not to calibrate the model to make predictions about future fluxes but rather to understand how much information about process controls can be derived directly from the NEE observations. A wavelet decomposition enabled us to assess model performance at multiple time scales from diurnal to decadal. The model parameters are most highly constrained by eddy flux data at daily to seasonal time scales, suggesting that this approach is not useful for calculating annual integrals. However, the ability of the model to fit both the diurnal and seasonal variability patterns in the data simultaneously, using the same parameter set, indicates the effectiveness of this parameter estimation method. Our results quantify the extent to which the eddy covariance data contain information about the ecosystem process parameters represented in the model, and suggest several next steps in model development and observations for improved synthesis of models with flux observations. [source]


Estimates of CO2 uptake and release among European forests based on eddy covariance data

GLOBAL CHANGE BIOLOGY, Issue 9 2004
Albert I. J. M. Van Dijk
Abstract The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night-time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature,respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature,respiration relationship. A fundamental difference in air temperature-based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6,2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R. [source]


Leaf age affects the seasonal pattern of photosynthetic capacityand net ecosystem exchange of carbon in a deciduous forest

PLANT CELL & ENVIRONMENT, Issue 6 2001
K. B. Wilson
Abstract Temporal trends in photosynthetic capacity are a critical factorin determining the seasonality and magnitude of ecosystem carbonfluxes. At a mixed deciduous forest in the south-eastern United States (Walker Branch Watershed, Oak Ridge, TN, USA), we independently measured seasonal trends in photosynthetic capacity (using single-leaf gas exchange techniques) and the whole-canopycarbon flux (using the eddy covariance method). Soil respiration was also measured using chambers and an eddy covariance system beneath the canopy. These independent chamber and eddy covariance measurements, along with a biophysical model (CANOAK), areused to examine how leaf age affects the seasonal pattern of carbon uptake during the growing season. When the measured seasonality in photosynthetic capacity is representedin the CANOAK simulations, there is good agreement with the eddy covariance data on the seasonal trends in carbon uptake. Removing the temporal trends in the simulations by using the early season maximum value of photosynthetic capacity over the entire growing season over estimates the annual carbon uptake by about 300 g C m,2 year,1, halfthe total estimated annual net ecosystem exchange. Alternatively, use of the mean value of photosynthetic capacity incorrectly simulates the seasonality in carbon uptake by the forest. In addition to changes related to leaf development and senescence, photosynthetic capacitydecreased in the middle and late summer, even when leaf nitrogenwas essentially constant. When only these middle and late summer reductions were neglected in the model simulations, CANOAK still overestimated the carbon uptake by an amount comparable to 25% ofthe total annual net ecosystem exchange. [source]