Home About us Contact | |||
EDS Analysis (ed + analysis)
Selected AbstractsEffect of different acid treatments on a porcelain surface1JOURNAL OF ORAL REHABILITATION, Issue 1 2001. Canay The objective of this study was to determine the effect of selected surface treatments on the surface texture of a feldspathic porcelain. The three different etchant treatments were, acidulated phosphate fluoride (APF) applied for 10 min and hydrofluoric acid (HF) applied for 1 and 4 min. After acid treatment, half of the specimens from each group were cleansed with water and others were subjected to ultrasonic cleaning and then dried. Half of the specimens cleansed with two different methods were treated with silane. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the effects of such treatments. Etching with APF displays shallow patterns. Etching for 1 min with HF displays deep channels, pores and precipitates on the surface and as the etching time increased these channels were replaced by larger channels. EDS analyses show that the crystalline precipitates on the etched surfaces, which were not readily soluble in water, were the reaction products of Na, K, Ca, Al, etc. HF displayed a more roughened surface than the APF gel. However, the precipitates remain on the surface after acid application, they can only be removed by ultrasonic cleaning and cannot be removed by rinsing. [source] Electrochemical and mechanical behaviour of Sn-2.5Ag-0.5Cu and Sn-48Bi-2Zn soldersMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 8 2008G. Montesperelli Abstract In this paper, two tin-based alloys (Sn-2.5Ag-0.5Cu and Sn-48Bi-2Zn) are proposed as new lead-free solders. Alloys have been developed by melting pure elements. Samples have been evaluated in terms of microstructure, corrosion resistance and mechanical features. Corrosion tests have been performed in 3% NaCl solution by polarization curves and electrochemical impedance spectroscopy (EIS). SEM observations and EDS analysis were carried out on samples before and after corrosion tests. Static monotonic tensile tests have been performed on three specimens for each alloy. SEM and EDS analysis revealed the presence of Sn-Ag and Sn-Cu intermetallic compounds within the Sn-Ag-Cu alloy. As a result of corrosion test, the Sn-Ag-Cu alloy showed a better corrosion resistance with respect to Sn-Bi-Zn. Both alloys evidenced good mechanical properties higher than the traditional Sn-Pb system. Sn-Ag-Cu seems to be a suitable soldering material. [source] Investigation on the oxidation behaviour of gamma titanium aluminides coated with thermal barrier coatingsMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 7 2008R. Braun Abstract In the present study, the applicability of thermal barrier coatings (TBCs) on ,-TiAl alloys was investigated. Two alloys with the chemical compositions of Ti-45Al-8Nb-0.2B-0.15C and Ti-45Al-1Cr-6Nb-0.4W-0.2B-0.5C-0.2Si were used. Before TBC deposition, the specimens were pre-oxidised in laboratory air or low partial pressure oxygen atmosphere. Yttria partially stabilised zirconia top coats were then deposited using electron-beam physical vapour deposition (EB-PVD). The oxidation behaviour of the ,-TiAl specimens with TBC was studied by cyclic oxidation testing in air at 850 and 900,°C. Post-oxidation analysis of the coating systems was performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS). No spallation of the TBC was observed for pre-oxidised specimens of both alloys when exposed to air at 850,°C for 1100 cycles of 1,h dwell time at high temperature. SEM micrographs of the thermally grown oxide scale revealed outer mixed TiO2/Al2O3 protrusions with a columnar structure. The protrusions contained small particles of zirconia and a low amount of about 0.5 at% zirconium was measured by EDS analysis throughout this outer oxide mixture. The TBCs exhibited excellent adherence on the oxide scale. Intercolumnar gaps and pores in the root area of the TBC were filled with titania and alumina. Below the outer columnar oxide scale, a broad porous zone of predominant titania was observed. The transition region between the oxide scale and substrate consisted of a discontinuous nitride layer intermixed with alumina particles and intermetallic phases rich in niobium formed at the nitride layer/substrate interface. When thermally cycled at 900,°C, the oxide scales on the alloy Ti-45Al-8Nb-0.2B-0.15C pre-oxidised in low partial pressure oxygen spalled off after 540 cycles. For the sample with TBC, spallation was observed after 810 cycles. Failure occurred in the thermally grown oxide near the oxide/nitride layer interface. Microstructural examinations revealed again oxide scales with columnar structure beneath the zirconia top coat and good adherence of the TBC on the thermally grown oxides formed at 900,°C. [source] Plasma-Assisted Atomic Layer Deposition of Al2O3 at Room TemperaturePLASMA PROCESSES AND POLYMERS, Issue S1 2009Tommi O. Kääriäinen Abstract A new design of plasma source has been used for the plasma-assisted atomic layer deposition (PA-ALD) of Al2O3 films at room temperature. In this PA-ALD reactor the plasma is generated by capacitive coupling directly in the deposition chamber adjacent to the substrate but can be separated from it by a grid to reduce the ion bombardment while maintaining the flow of radicals directly to the substrate surface. During the ALD cycle a mixture of nitrogen and argon was introduced into the reactor to act as a purge gas between precursor pulses and to facilitate the generation of a plasma during the plasma cycle. Sequential exposures of TMA and excited O2 precursors were used to deposit Al2O3 films on Si(100) substrates. A plasma discharge was activated during the oxygen gas pulse to form radicals in the reactor space. The experiments showed that the growth rate of the film increased with increasing plasma power and with increasing O2 pulse length before saturating at higher power and longer O2 pulse length. The growth rate saturated at the level of 1.78 Å·cycle,1. EDS analysis showed that the films were oxygen rich and had carbon as an impurity. This can be explained by the presence of bonds between hydrocarbons from the unreacted TMA precursor and excess oxygen in the film. ATR-FTIR spectroscopy measurements indicated a change in growth mechanism when the distance between the location of the radical generation and the substrate was varied. A similar effect was observed with the use of different plasma power levels. [source] |