Home About us Contact | |||
Ecosystem Types (ecosystem + type)
Selected AbstractsA review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emissionECOLOGY LETTERS, Issue 10 2009Lingli Liu Abstract Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53,76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems. [source] Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004GLOBAL CHANGE BIOLOGY, Issue 11 2009YUANHE YANG Abstract Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine grasslands on the plateau amounted to 4.4 Pg C (1 Pg=1015 g), with an overall average of 3.9 kg C m,2. SOC changes during 1980s,2004 were estimated at ,0.6 g C m,2 yr,1, ranging from ,36.5 to 35.8 g C m,2 yr,1 at 95% confidence, indicating that SOC stock in the Tibetan alpine grasslands remained relatively stable over the sampling periods. Our findings are nonconsistent with previous reports of loss of soil C in grassland ecosystems due to the accelerated decomposition with warming. In the case of the alpine grasslands on the Tibetan Plateau studied here, we speculate that increased rates of decomposition as soils warmed during the last two decades may have been compensated by increased soil C inputs due to increased grass productivity. These results suggest that soil C stock in terrestrial ecosystems may respond differently to climate change depending on ecosystem type, regional climate pattern, and intensity of human disturbance. [source] Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climateGLOBAL ECOLOGY, Issue 3 2009Yangjian Zhang ABSTRACT Aim, To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location, The global planetary ecosystem. Methods, The 4-year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000,03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results, The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year,1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between ,20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between ,10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions, The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type. [source] Connecting Atmosphere and Wetland: Energy and Water Vapour ExchangeGEOGRAPHY COMPASS (ELECTRONIC), Issue 4 2008Peter M. Lafleur Wetlands are ubiquitous over the globe, comprise a vast array of ecosystem types and are of great ecological and social importance. Their functioning is intimately tied to the atmosphere by the energy and mass exchanges that take place across the wetland,atmosphere boundary. This article examines recent research into these exchanges, with an emphasis on the water vapour exchange. Although broad classes of wetland type, such as fen, bog and marsh, can be defined using ecological or hydrologic metrics, distinct difference in energy exchanges between the classes cannot be found. This arises because there are many factors that control the energy exchanges and interplay of these factors is unique to every wetland ecosystem. Wetlands are more similar in their radiation balances than in the partitioning of this energy into conductive and turbulent heat fluxes. This is especially true of evapotranspiration (ET) rates, which vary considerably among and within wetland classes. A global survey of wetland ET studies shows that location has little to do with ET rates and that variation in rates is largely determined by local climate and wetland characteristics. Recent modelling studies suggest that although wetlands occupy a small portion of the global land surface, their water and energy exchanges may be important in regional and global climates. Although the number of studies of wetland,atmosphere interactions has increased in recent years more research is needed. Five key areas of study are identified: (i) the importance of moss covers, (ii) lack of study in tropical systems, (iii) inclusion of wetlands in global climate models, (iv) importance of microforms in wetlands and their scaling to the whole ecosystem, and (v) the paucity of annual ET measurements. [source] Soil inorganic carbon storage pattern in ChinaGLOBAL CHANGE BIOLOGY, Issue 10 2008NA MI Abstract Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979,1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0,0.1, 0.1,0.3, 0.3,0.5, and 0.5,1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500,800 mm yr,1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr,1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1,0.3 m for first and 0.3,0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding. [source] Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical reviewGLOBAL CHANGE BIOLOGY, Issue 6 2006JENS-ARNE SUBKE Abstract Partitioning soil carbon dioxide (CO2) efflux (RS) into autotrophic (RA; including plant roots and closely associated organisms) and heterotrophic (RH) components has received considerable attention, as differential responses of these components to environmental change have profound implications for the soil and ecosystem C balance. The increasing number of partitioning studies allows a more detailed analysis of experimental constraints than was previously possible. We present results of an exhaustive literature search of partitioning studies and analyse global trends in flux partitioning between biomes and ecosystem types by means of a metaanalysis. Across all data, an overall decline in the RH/RS ratio for increasing annual RS fluxes emerged. For forest ecosystems, boreal coniferous sites showed significantly higher (P<0.05) RH/RS ratios than temperate sites, while both temperate or tropical deciduous forests did not differ in ratios from any of the other forest types. While chronosequence studies report consistent declines in the RH/RS ratio with age, no difference could be detected for different age groups in the global data set. Different methodologies showed generally good agreement if the range of RS under which they had been measured was considered, with the exception of studies estimating RH by means of root mass regressions against RS, which resulted in consistently lower RH/RS estimates out of all methods included. Additionally, the time step over which fluxes were partitioned did not affect RH/RS ratios consistently. To put results into context, we review the most common techniques and point out the likely sources of errors associated with them. In order to improve soil CO2 efflux partitioning in future experiments, we include methodological recommendations, and also highlight the potential interactions between soil components that may be overlooked as a consequence of the partitioning process itself. [source] An empirical model of carbon fluxes in Russian tundraGLOBAL CHANGE BIOLOGY, Issue 2 2001Dmitri G. Zamolodchikov Summary This study presents an empirical model based on a GIS approach, which was constructed to estimate the large-scale carbon fluxes over the entire Russian tundra zone. The model has four main blocks: (i) the computer map of tundra landscapes; (ii) data base of long-term weather records; (iii) the submodel of phytomass seasonal dynamics; and (iv) the submodel of carbon fluxes. The model uses exclusively original in situ diurnal CO2 flux chamber measurements (423 sample plots) conducted during six field seasons (1993,98). The research sites represent the main tundra biome landscapes (arctic, typical, south shrub and mountain tundras) in the latitudinal diapason of 65,74°N and longitudinal profile of 63°E,172°W. The greatest possible diversity of major ecosystem types within the different landscapes was investigated. The majority of the phytomass data used was obtained from the same sample plots. The submodel of carbon fluxes has two dependent [GPP, Gross Respiration (GR)] and several input variables (air temperature, PAR, aboveground phytomass components). The model demonstrates a good correspondence with other independent regional and biome estimates and carbon flux seasonal patterns. The annual GPP of Russian tundra zone for the area of 235 × 106 ha was estimated as ,485.8 ± 34.6 × 106 tC, GR as +474.2 ± 35.0 × 106 tC, and NF as ,11.6 ± 40.8 × 106 tC, which possibly corresponds to an equilibrium state of carbon balance during the climatic period studied (the first half of the 20th century). The results advocate that simple regression-based models are useful for extrapolating carbon fluxes from small to large spatial scales. [source] Global trends in senesced-leaf nitrogen and phosphorusGLOBAL ECOLOGY, Issue 5 2009Zhiyou Yuan ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source] Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoringJOURNAL OF APPLIED ECOLOGY, Issue 4 2010Salomé Menezes Summary 1.,Species traits have been frequently used in ecological studies in an attempt to develop a general ecological framework linking biological communities to habitat pressures. The trait approach offers a mechanistic alternative to traditional taxonomy-based descriptors. This review focuses on research employing traits as biomonitoring tools for freshwater ecosystems, although the lessons learned have wider application in the assessment of other ecosystem types. 2.,We review the support from ecological theory to employ species traits for biomonitoring purposes (e.g. the habitat templet concept, landscape filtering hypothesis), and the subsequent studies that test the hypotheses arising from these theories, and apply this knowledge under real freshwater biomonitoring scenarios. We also include studies that deal with more specific issues such as trait trade-offs and trait syndromes. 3.,We highlight the functional trait approach as one of the most promising tools emerging for biomonitoring freshwater ecosystems. Several technical issues are addressed and solutions are proposed. We discuss the need for: a broader unified trait biomonitoring tool; a more accurate understanding of the natural variation of community patterns of trait expression; approaches to diminish the effects of trait trade-offs and trait syndromes; additional life history and ecological requirement studies; and the detection of specific impacts under multiple stressor scenarios. 4.,Synthesis and applications. This review provides biologists with the conceptual underpinning for the use of species traits as community descriptors and for freshwater biomonitoring and management. We expect that the functional trait approach will ultimately improve communication to managers and legislators of the importance of protecting freshwater ecosystem functions. [source] Modeling volatile isoprenoid emissions , a story with split endsPLANT BIOLOGY, Issue 1 2008R. Grote Abstract Accurate prediction of plant-generated volatile isoprenoid fluxes is necessary for reliable estimation of atmospheric ozone and aerosol formation potentials. In recent years, significant progress has been made in understanding the environmental and physiological controls on isoprenoid emission and in scaling these emissions to canopy and landscape levels. We summarize recent developments and compare different approaches for simulating volatile isoprenoid emission and scaling up to whole forest canopies with complex architecture. We show that the current developments in modeling volatile isoprenoid emissions are "split-ended" with simultaneous but separated efforts in fine-tuning the empirical emission algorithms and in constructing process-based models. In modeling volatile isoprenoid emissions, simplified leaf-level emission algorithms (Guenther algorithms) are highly successful, particularly after scaling these models up to whole regions, where the influences of different ecosystem types, ontogenetic stages, and variations in environmental conditions on emission rates and dynamics partly cancel out. However, recent experimental evidence indicates important environmental effects yet unconsidered and emphasize, the importance of a highly dynamic plant acclimation in space and time. This suggests that current parameterizations are unlikely to hold in a globally changing and dynamic environment. Therefore, long-term predictions using empirical algorithms are not necessarily reliable. We show that process-based models have large potential to capture the influence of changing environmental conditions, in particular if the leaf models are linked with physiologically based whole-plant models. This combination is also promising in considering the possible feedback impacts of emissions on plant physiological status such as mitigation of thermal and oxidative stresses by volatile isoprenoids. It might be further worth while to incorporate main features of these approaches in regional empirically-based emission estimations thereby merging the "split ends". [source] Typology in Mediterranean transitional waters: new challenges and perspectivesAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2006A. Basset Abstract 1.Transitional waters are ecotones between terrestrial, freshwater and marine ecosystems, being characterized by high spatial heterogeneity and temporal variability. 2.The EU Water Framework Directive (WFD) posed to the scientific community the challenge to classify these ecosystems into a small number of types, while retaining a functional classification of ecosystem types. 3.A niche theory approach is proposed to identify the limiting forcing factors organizing biological quality elements, i.e. the limiting niche dimensions. 4.The analysis of a macro-invertebrate dataset from published papers on 36 Italian lagoons suggested a two-level typological classification of Mediterranean lagoons. 5.Basic ecological theories, such as niche and island biogeography theories, have fundamental implications for the process of developing a typological classification for all aquatic ecosystems, as required by the WFD. Copyright © 2006 John Wiley & Sons, Ltd. [source] Near-ground solar radiation along the grassland,forest continuum: Tall-tree canopy architecture imposes only muted trends and heterogeneityAUSTRAL ECOLOGY, Issue 1 2010DAVID D. BRESHEARS Abstract Solar radiation directly and indirectly drives a variety of ecosystem processes. Our aim was to evaluate how tree canopy architecture affects near-ground, incoming solar radiation along gradients of increasing tree cover, referred to as the grassland,forest continuum. We evaluated a common type of canopy architecture: tall trees that generally have their lowest level of foliage high above, rather than close to the ground as is often the case for shorter trees. We used hemispherical photographs to estimate near-ground solar radiation using the metric of Direct Site Factor (DSF) on four sites in north Queensland, Australia that formed a grassland,forest continuum with tree canopy cover ranging from 0% to 71%. Three of the four sites had tall Eucalyptus trees with foliage several metres above the ground. We found that: (i) mean DSF exceeded >70% of the potential maximum for all sites, including the site with highest canopy cover; (ii) DSF variance was not highly sensitive to canopy coverage; and (iii) mean DSF for canopy locations beneath trees was not significantly lower than for adjacent intercanopy locations. Simulations that hypothetically placed Australian sites with tall tree canopies at other latitude,longitude locations demonstrated that differences in DSF were mostly due to canopy architecture, not specific site location effects. Our findings suggest that tall trees that have their lowest foliage many metres above the ground and have lower foliar density only weakly affect patterns of near-ground solar radiation along the grassland,forest continuum. This markedly contrasts with the strong effect that shorter trees with foliage near the ground have on near-ground solar radiation patterns along the continuum. This consequence of differential tree canopy architecture will fundamentally affect other ecosystem properties and may explain differential emphases that have been placed on canopy,intercanopy heterogeneity in diverse global ecosystem types that lie within the grassland,forest continuum. [source] |