Ecosystem Science (ecosystem + science)

Distribution by Scientific Domains


Selected Abstracts


Ecosystem science and human,environment interactions in the Hawaiian archipelago

JOURNAL OF ECOLOGY, Issue 3 2006
PETER VITOUSEK
Summary 1Tansley's ecosystem concept remains a vital framework for ecological research in part because the approach facilitates interdisciplinary analyses of ecological systems. 2Features of the Hawaiian Islands , particularly the nearly orthogonal variation in many of the factors that control variation among ecosystems elsewhere , make the archipelago a useful model system for interdisciplinary research designed to understand fundamental controls on the state and dynamics of ecosystems, and their consequences for human societies. 3Analyses of rain forest sites arrayed on a substrate age gradient from c. 300 years to over 4 million years across the Hawaiian archipelago demonstrate that the sources of calcium and other essential cations shift from > 80% rock-derived in young sites to > 80% derived from marine aerosol on substrates older than 100 000 years. Rock-derived phosphorus is retained longer within ecosystems, but eventually long-distance transport of continental dust from Asia becomes the most important source of phosphorus. 4A biogeochemical feedback from low nutrient availability to efficient resource use by trees to slow decomposition and nutrient regeneration accentuates the geochemically driven pattern of low phosphorus availability and phosphorus limitation to net primary productivity in the oldest site. 5Variations in ecosystem biogeochemistry across the archipelago shaped the development and sustainability of Polynesian agricultural systems in the millennium between their discovery of Hawai'i and contact by Europeans. Irrigated pondfields were largely confined to stream valleys on the older islands, while rain-fed dryland systems occupied a narrow zone of fertile, well-watered soils on the younger islands. 6The ecosystem approach often represents the most appropriate level of organization for analyses of human influences on ecological systems; it can play a central role in the design and analysis of alternative agricultural, industrial and residential systems that could reduce the human footprint on the Earth. [source]


The uptake of applied ecology

JOURNAL OF APPLIED ECOLOGY, Issue 1 2002
S. J. Ormerod
Summary 1We asked 229 authors who have published recently in the Journal of Applied Ecology (1999,2001) whether their papers made management or policy recommendations and whether they had evidence of consequent uptake. 2A total of 108 respondents working in the UK (34%), Europe (30%), the Americas (12%), Australasia (11%), Asia (7%) and Africa (6%) reported on 110 papers. They represented agro-ecosystems (35%), temperate forests or woodlands (16%), savanna, grass or arid lands (11%), rivers or wetlands (10%), estuaries or marine systems (7%) and tropical forests (5%). The major organisms were invertebrates (27%), birds (24%), mammals (21%) and higher plants (21%). Topics apparently under-represented in recent coverage include ecosystem science, urban areas, soils, mountain systems, fish, amphibians and lower organisms such as algae. 3Almost all papers (99%) carried recommendations and for 57% there was evidence of uptake in the broad categories of ,environmental management or models', ,information, training and education' and ,monitoring and assessment'. Most uptake involved large geographical scales through habitat or species management plans (32% of cases), effects on reserve design or designation (6%), and effects on agri-environmental policy (5%). The development of further research (11%), the communication of methods to other ecologists (9%), the dissemination of recommendations to practitioners or agencies (7%), and uptake in training or education (5%) were important uses of information. 4Prestige from publication in the Journal of Applied Ecology aided several authors in convincing end-users of research value. User involvement in research as participants or funders was widespread (> 42% of papers), a fact which almost certainly promotes uptake along with the parallel dissemination of management messages. We view applied issues as an important interface between end-users and ecologists of value to ,both' communities but suggest that improved communication will further benefit the sponsorship and application of ecological science. 5The major reason offered for lack of uptake was that it was still too soon after publication (21% of respondents). Costs, difficulty of implementation, the scale of the problem, and ,challenges to existing thinking' each figured in more than one response. 6For some respondents, papers were led by curiosity rather than the need for direct application. Several authors published in the Journal to share ideas internationally, or said that recommendations were general, conceptual or long-term rather than specific. The editors of the Journal of Applied Ecology recognize the seminal importance of contributions that affect policy incrementally and conceptually as much as those with specific application. 7These data provide evidence that ecological science is aiding environmental management and policy across a wide range of regions, ecosystems and types of organisms; rather than merely detecting problems, applied ecology is offering solutions both directly and more diffusely through conceptual advance. We invite the user community to offer their own perspectives about the value of research-led publications such as this Journal, about how links between researchers and users might be strengthened, and about how the uptake of applied ecology might be further advanced. [source]


Psychobiogeography: meanings of nature and motivations for a democratized conservation ethic

JOURNAL OF BIOGEOGRAPHY, Issue 6 2001
Stephen Trudgill
The language of ecosystem science is pervaded by value-laden terms such as pristine, fragile, disturbance, balance, dominance and alien species. Such terms have high status and are often used in the rhetoric of the conservation ethic. Here, I consider the possibility of the use of less value-laden terms such as change, increase, decrease and so on. This would distinguish between values and perceived trends or states and leave ecosystem science to deal with what is verifiable. However, I also consider the opposite point of view, in that the value-laden terms, like ,the balance of nature', relate to how a wide range of people feel about nature and are effective emotive motivators of the conservation ethic in society, providing a common language for a discourse between ecosystem scientists and other people. [source]