Ecosystem Restoration (ecosystem + restoration)

Distribution by Scientific Domains


Selected Abstracts


Opportunities for Nonnative Ecological Replacements in Ecosystem Restoration

RESTORATION ECOLOGY, Issue 3 2010
Kevin A. Parker
Translocations can take a variety of forms, and there is considerable debate as to what defines an acceptable translocation. This is particularly so if a proposal suggests moving a species beyond its natural range, which might be necessary for conservation purposes if habitat within the natural range is extensively modified. An extension of this approach is to use closely related ecological analogs to replace extinct species. This approach is controversial, and opportunities to do so will be rare, particularly for vertebrate species, but the use of ecological analogs is not without precedent, and ultimately will provide for more complete ecological restoration. We discuss the current use of ecological analogs to replace extinct species and conclude with a rare opportunity to replace the extinct New Zealand quail Coturnix novaezelandiae with the extant Australian brown quail Coturnix ypsilophora. [source]


Forest History as a Basis for Ecosystem Restoration,A Multidisciplinary Case Study in a South Swedish Temperate Landscape

RESTORATION ECOLOGY, Issue 2 2007
Matts Lindbladh
Abstract Basic knowledge of the previous forest types or ecosystem present in an area ought to be an essential part of all landscape restoration. Here, we present a detailed study of forest and land use history over the past 2,000 years, from a large estate in southernmost Sweden, which is currently undergoing a restoration program. In particular, the aim was to identify areas with long continuity of important tree species and open woodland conditions. We employed a multidisciplinary approach using paleoecological analyses (regional and local pollen, plant macrofossil, tree ring) and historical sources (taxation documents, land surveys, forest inventories). The estate has been dominated by temperate broad-leaved trees over most of the studied period. When a forest type of Tilia, Corylus, and Quercus started to decline circa 1,000 years ago, it was largely replaced by Fagus. Even though extensive planting of Picea started in mid-nineteenth century, Fagus and Quercus have remained rather common on the estate up to present time. Both species show continuity on different parts of the estate from eighteenth century up to present time, but in some stands, for the entire 2,000 years. Our suggestions for restoration do not aim for previous "natural" conditions but to maintain the spatial vegetational pattern created by the historical land use. This study gives an example of the spatial and temporal variation of the vegetation that has historically occurred within one area and emphasizes that information from one methodological technique provides only limited information about an area's vegetation history. [source]


Does Facilitation of Faunal Recruitment Benefit Ecosystem Restoration?

RESTORATION ECOLOGY, Issue 4 2002
An Experimental Study of Invertebrate Assemblages in Wetland Mesocosms
Abstract We used wetland mesocosms (1) to experimentally assess whether inoculating a restored wetland site with vegetation/sediment plugs from a natural wetland would alter the development of invertebrate communities relative to unaided controls and (2) to determine if stocking of a poor invertebrate colonizer could further modify community development beyond that due to simple inoculation. After filling mesocosms with soil from a drained and cultivated former wetland and restoring comparable hydrology, mesocosms were randomly assigned to one of three treatments: control (a reference for unaided community development), inoculated (received three vegetation/sediment cores from a natural wetland), and stocked + inoculated (received three cores and were stocked with a poorly dispersing invertebrate group,gastropods). All mesocosms were placed 100 m from a natural wetland and allowed to colonize for 82 days. Facilitation of invertebrate colonization led to communities in inoculated and stocked + inoculated treatments that contrasted strongly with those in the unaided control treatment. Control mesocosms had the highest taxa richness but the lowest diversity due to high densities and dominance of Tanytarsini (Diptera: Chironomidae). Community structure in inoculated and stocked + inoculated mesocosms was more similar to that of a nearby natural wetland, with abundance more evenly distributed among taxa, leading to diversity that was higher than in the control treatment. Inoculated and stocked + inoculated communities were dominated by non-aerial invertebrates, whereas control mesocosms were dominated by aerial invertebrates. These results suggest that facilitation of invertebrate recruitment does indeed alter invertebrate community development and that facilitation may lead to a more natural community structure in less time under conditions simulating wetland restoration. [source]


Large-Scale Ecosystem Restoration: Five Case Studies from the USA

AUSTRAL ECOLOGY, Issue 2 2010
TOM CELEBREZZE
No abstract is available for this article. [source]


Recovering the Reptile Community after the Mine-Tailing Accident of Aznalcóllar (Southwestern Spain)

RESTORATION ECOLOGY, Issue 5 2009
Rocío Márquez-Ferrando
Abstract Ecosystem restoration requires that habitat requirements of all species be considered. Among animal communities in Mediterranean ecosystems, reptiles, as ectothermic vertebrates, need refuges for avoidance of extreme environmental temperatures, concealment from predators, and oviposition sites. In 1998, a massive amount of tailings broke out of the holding pond of the Aznalcóllar mine (southwestern Spain) and polluted the Guadiamar river valley. After the accident, a soil- and vegetation restoration program began, and the Guadiamar Green Corridor was created to connect two huge natural areas, Doñana National Park and the Sierra Morena. Within this corridor, the reptile community remained dramatically impoverished, probably because of elimination of all natural refuges during the soil restoration program. To test this hypothesis, we set an array of artificial refuges (logs) in a large experimental plot. During the 5 years of the experiment (2002,2006), the area managed with artificial refuges exhibited a better and faster recovery of the reptile community in species richness and individual abundance than did the control area with no artificial refuges. Moreover, reptile colonization of the Guadiamar Green Corridor was transverse rather than lineal,that is, it did not act as a corridor for reptiles, at least in the first stages of colonization. This suggests that landscape restoration programs should not neglect refuge availability, a limiting resource for reptile species. [source]


Linking ecological theory with stream restoration

FRESHWATER BIOLOGY, Issue 4 2007
P. S. LAKE
Summary 1. Faced with widespread degradation of riverine ecosystems, stream restoration has greatly increased. Such restoration is rarely planned and executed with inputs from ecological theory. In this paper, we seek to identify principles from ecological theory that have been, or could be, used to guide stream restoration. 2. In attempts to re-establish populations, knowledge of the species' life history, habitat template and spatio-temporal scope is critical. In many cases dispersal will be a critical process in maintaining viable populations at the landscape scale, and special attention should be given to the unique geometry of stream systems 3. One way by which organisms survive natural disturbances is by the use of refugia, many forms of which may have been lost with degradation. Restoring refugia may therefore be critical to survival of target populations, particularly in facilitating resilience to ongoing anthropogenic disturbance regimes. 4. Restoring connectivity, especially longitudinal connectivity, has been a major restoration goal. In restoring lateral connectivity there has been an increasing awareness of the riparian zone as a critical transition zone between streams and their catchments. 5. Increased knowledge of food web structure , bottom-up versus top-down control, trophic cascades and subsidies , are yet to be applied to stream restoration efforts. 6. In restoration, species are drawn from the regional species pool. Having overcome dispersal and environmental constraints (filters), species persistence may be governed by local internal dynamics, which are referred to as assembly rules. 7. While restoration projects often define goals and endpoints, the succession pathways and mechanisms (e.g. facilitation) by which these may be achieved are rarely considered. This occurs in spite of a large of body of general theory on which to draw. 8. Stream restoration has neglected ecosystem processes. The concept that increasing biodiversity increases ecosystem functioning is very relevant to stream restoration. Whether biodiversity affects ecosystem processes, such as decomposition, in streams is equivocal. 9. Considering the spatial scale of restoration projects is critical to success. Success is more likely with large-scale projects, but they will often be infeasible in terms of the available resources and conflicts of interest. Small-scale restoration may remedy specific problems. In general, restoration should occur at the appropriate spatial scale such that restoration is not reversed by the prevailing disturbance regime. 10. The effectiveness and predictability of stream ecosystem restoration will improve with an increased understanding of the processes by which ecosystems develop and are maintained. Ideas from general ecological theory can clearly be better incorporated into stream restoration projects. This will provide a twofold benefit in providing an opportunity both to improve restoration outcomes and to test ecological theory. [source]


Genetic evaluation of a proposed introduction: the case of the greater prairie chicken and the extinct heath hen

MOLECULAR ECOLOGY, Issue 7 2004
Eric P. Palkovacs
Abstract Population introduction is an important tool for ecosystem restoration. However, before introductions should be conducted, it is important to evaluate the genetic, phenotypic and ecological suitability of possible replacement populations. Careful genetic analysis is particularly important if it is suspected that the extirpated population was unique or genetically divergent. On the island of Martha's Vineyard, Massachusetts, the introduction of greater prairie chickens (Tympanuchus cupido pinnatus) to replace the extinct heath hen (T. cupido cupido) is being considered as part of an ecosystem restoration project. Martha's Vineyard was home to the last remaining heath hen population until its extinction in 1932. We conducted this study to aid in determining the suitability of greater prairie chickens as a possible replacement for the heath hen. We examined mitochondrial control region sequences from extant populations of all prairie grouse species (Tympanuchus) and from museum skin heath hen specimens. Our data suggest that the Martha's Vineyard heath hen population represents a divergent mitochondrial lineage. This result is attributable either to a long period of geographical isolation from other prairie grouse populations or to a population bottleneck resulting from human disturbance. The mtDNA diagnosability of the heath hen contrasts with the network of mtDNA haplotypes of other prairie grouse (T. cupido attwateri, T. pallidicinctus and T. phasianellus), which do not form distinguishable mtDNA groupings. Our findings suggest that the Martha's Vineyard heath hen was more genetically isolated than are current populations of prairie grouse and place the emphasis for future research on examining prairie grouse adaptations to different habitat types to assess ecological exchangeability between heath hens and greater prairie chickens. [source]


The Influence of Historical Land Use and Water Availability on Grassland Restoration

RESTORATION ECOLOGY, Issue 2010
Zhuwen Xu
The ecological role of historical land use has rarely been explored in the context of grassland restoration. We conducted a 4-year field experiment in a steppe and an old field in Inner Mongolia in northern China to examine the influence of historical land use and water availability on ecosystem restoration. Species richness, evenness, and plant cover were higher in the steppe than in the old field. The steppe was more temporally stable compared with the old field in terms of species richness, evenness, plant density, and cover. Water addition increased peak aboveground biomass, belowground net primary productivity, species richness, plant density, and cover in both the steppe and the old field. Water addition also enhanced the stability of ecosystems and the restoration of grassland. Our findings suggested that historical land use determines community structure and influences the process of grassland restoration. Converting grasslands to farmland in semiarid areas can cause the long-term loss of biodiversity and instability of ecosystem with consequent impacts on ecosystem services. The amendment of limited resources is an effective practice to increase the success of ecosystem restoration. [source]


A Striking Profile: Soil Ecological Knowledge in Restoration Management and Science

RESTORATION ECOLOGY, Issue 4 2008
Mac A. Callaham Jr.
Abstract Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this literature, we observed an absence of in-depth discussion of how soils, and in particular the ecology of soils, can be integrated into the developing theory of restoration science. These observations prompted us to assess the current role of soil ecological knowledge in restoration research and restoration practice. Although soils are universally regarded as critical to restoration success, and much research has included manipulations of soil variables, we found that better integration of soil ecological principles could still contribute much to the practice of ecosystem restoration. Here we offer four potential points of departure for increased dialog between restoration ecologists and soil ecologists. We hope to encourage the view that soil is a complex, heterogeneous, and vital entity and that adoption of this point of view can positively affect restoration efforts worldwide. [source]


The role of vegetation succession in ecosystem restoration: Introduction

APPLIED VEGETATION SCIENCE, Issue 1 2001
Petr Py
First page of article [source]


The role of spontaneous vegetation succession in ecosystem restoration: A perspective

APPLIED VEGETATION SCIENCE, Issue 1 2001
Karel Prach
Abstract. The paper summarizes ideas which were discussed during the ,Spontaneous Succession in Ecosystem Restoration' conference and elaborated through further discussion among the authors. It seeks to promote the integration of scientific knowledge on spontaneous vegetation succession into restoration programs. A scheme illustrating how knowledge of spontaneous succession may be applied to restoration is presented, and perspectives and possible future research on using spontaneous vegetation succession in ecosystem restoration are proposed. It is concluded that when implementing spontaneous succession for ecological restoration the following points must be considered: setting clear aims; evaluation of environmental site conditions; deciding whether spontaneous succession is an appropriate way to achieve the aims; prediction of successional development; monitoring of the results. The need for interdisciplinary approaches and communication between scientists, engineers and decision-makers is emphasized. [source]


Applying forest restoration principles to coral reef rehabilitation

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2003
N. Epstein
Abstract 1.Forest restoration through silviculture (gardening) programs revives productivity, biodiversity, and stability. As in silviculture approaches, the coral ,gardening' strategy is based on a two-step protocol. 2.The first step deals with the establishment of in situ and/or ex situ coral nurseries in which corals are farmed (originating from two types of source material: asexual [ramets, nubbins], and sexual [planula larvae, spat] recruits). 3.The second is the reef rehabilitation step, where maricultured colonies are transplanted into degraded sites. 4.We compare here the rationale of forest restoration to coral reef ecosystem restoration by evaluating major key criteria. As in silviculture programs, a sustainable mariculture operation that focuses on the prime structural component of the reef (,gardening' with corals) may promote the persistence of threatened coral populations, as well as that of other reef taxa, thus maintaining genetic diversity. In chronically degrading reef sites this may facilitate a halt in biodiversity depletion. 5.Within the current theoretical framework of ecosystem restoration, the recovery of biodiversity indices is considered a core element since a rich species diversity provides higher ecosystem resilience to disturbances. 6.The gardening measure may also be implemented worldwide, eliminating the need to extract existing colonies for transplantation operations. At degraded reef sites, the coral gardening strategy can assist in managing human and non-human stakeholders' requirements as is done in forest management. Copyright © 2003 John Wiley & Sons, Ltd. [source]