Home About us Contact | |||
Ecosystem Recovery (ecosystem + recovery)
Selected AbstractsSalvage Logging, Ecosystem Processes, and Biodiversity ConservationCONSERVATION BIOLOGY, Issue 4 2006D.B. LINDENMAYER conservación de la biodiversidad; gestión forestal; procesos ecosistémicos Abstract:,We summarize the documented and potential impacts of salvage logging,a form of logging that removes trees and other biological material from sites after natural disturbance. Such operations may reduce or eliminate biological legacies, modify rare postdisturbance habitats, influence populations, alter community composition, impair natural vegetation recovery, facilitate the colonization of invasive species, alter soil properties and nutrient levels, increase erosion, modify hydrological regimes and aquatic ecosystems, and alter patterns of landscape heterogeneity. These impacts can be assigned to three broad and interrelated effects: (1) altered stand structural complexity; (2) altered ecosystem processes and functions; and (3) altered populations of species and community composition. Some impacts may be different from or additional to the effects of traditional logging that is not preceded by a large natural disturbance because the conditions before, during, and after salvage logging may differ from those that characterize traditional timber harvesting. The potential impacts of salvage logging often have been overlooked, partly because the processes of ecosystem recovery after natural disturbance are still poorly understood and partly because potential cumulative effects of natural and human disturbance have not been well documented. Ecologically informed policies regarding salvage logging are needed prior to major natural disturbances so that when they occur ad hoc and crisis-mode decision making can be avoided. These policies should lead to salvage-exemption zones and limits on the amounts of disturbance-derived biological legacies (e.g., burned trees, logs) that are removed where salvage logging takes place. Finally, we believe new terminology is needed. The word salvage implies that something is being saved or recovered, whereas from an ecological perspective this is rarely the case. Resumen:,Resumimos los impactos documentados y potenciales de la cosecha de salvamento , una forma de cosecha de madera que remueve árboles y otros materiales biológicos después de una perturbación natural. Tales operaciones pueden reducir o eliminar legados biológicos, modificar hábitats post perturbación, influir en poblaciones, alterar la composición de comunidades, impedir la recuperación de la vegetación natural, facilitar la colonización de especies invasoras, alterar las propiedades del suelo y de niveles de nutrientes, incrementar la erosión, modificar regímenes hidrológicos y ecosistemas acuáticos, y alterar patrones de heterogeneidad del paisaje. Estos impactos se pueden asignar a tres efectos amplios e interrelacionados: (1) alteración de la complejidad estructural del bosque; (2) alteración de procesos y funciones ecológicas; y (3) alteración de poblaciones de especies y de la composición de la comunidad. Algunos impactos pueden ser diferentes a o adicionales a los efectos de la cosecha de madera tradicional que no es precedida de una perturbación natural severa porque las condiciones antes, durante y después de la cosecha de salvamento pueden diferir de las que caracterizan a la cosecha de madera tradicional. Los impactos potenciales de la cosecha de salvamento a menudo han sido pasados por alto, en parte porque los procesos de recuperación del ecosistema después de una perturbación natural son poco conocidos y en parte porque los efectos acumulativos potenciales de perturbaciones naturales y humanas no han sido bien documentados. Se requieren políticas ecológicamente informadas para la cosecha de salvamento para que cuando ocurran las perturbaciones naturales se evite la toma de decisiones en situaciones de crisis. Estas políticas deberán establecer zonas exentas de salvamento y límites a las cantidades de legados biológicos derivados de la perturbación (e. g., árboles quemados, troncos) que son removidos donde se lleva a cabo la cosecha de salvamento. Finalmente, creemos que se requiere una nueva terminología. La palabra salvamento implica que algo esta siendo salvado o recuperado, y este raramente es el caso desde una perspectiva ecológica. [source] The management lessons learned from sediment remediation in the Detroit River , western Lake Erie watershedLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3-4 2004John H. Hartig Abstract During the 1970s,1990s, considerable emphasis was placed on minimizing the inputs of polychlorinated biphenyls (PCBs) from active sources. In addition, between 1993 and 2001, , $US130 × 106 was spent for sediment remediation within the western Lake Erie , Detroit River basin. In general, although PCB contamination of the Detroit River and Lake Erie declined significantly between the 1970s and mid-1990s, it has remained fairly stable over the past 10 years. Control of PCBs and other contaminants at their source remains a primary imperative for action. Remediation of contaminated sediments is growing in importance, however, as greater levels of source control are achieved. From a sediment management perspective, it is estimated that between 1993 and 2001 a substantially higher mass of PCBs (over two orders of magnitude higher) was removed as a result of contaminated sediment remediation, as compared to navigational dredging of shipping channels. In addition, there is a strong and compelling rationale for moving expeditiously to remediate severely contaminated sediment while it is still relatively contained in a small geographical area. The cost of not acting in a timely manner might be to exacerbate environmental problems including increased deformities and reproductive problems in wildlife, delayed ecosystem recovery and increased costs, or even preclusion of future sediment remediation. Based on discussions at a United States of America,Canada workshop held in 2002, key management advice includes continued emphasis to be placed on remediating contaminated sediment hot spots (including evaluating the effectiveness of projects), integrated monitoring efforts to be focused on beneficial use restoration and a high priority to be placed on sustaining and building upon modelling efforts, in order to be able to accurately predict and evaluate ecosystem responses to remedial and preventive actions. [source] Tropical Montane Forest Restoration in Costa Rica: Overcoming Barriers to Dispersal and EstablishmentRESTORATION ECOLOGY, Issue 4 2000Karen D. Holl Abstract Tropical forests are being cleared at an alarming rate although our understanding of their ecology is limited. It is therefore essential to design restoration experiments that both further our basic knowledge of tropical ecology and inform management strategies to facilitate recovery of these ecosystems. Here we synthesize the results of research on tropical montane forest recovery in abandoned pasture in Costa Rica to address the following questions: (1) What factors limit tropical forest recovery in abandoned pasture? and (2) How can we use this information to design strategies to facilitate ecosystem recovery? Our results indicate that a number of factors impede tropical forest recovery in abandoned pasture land. The most important barriers are lack of dispersal of forest seeds and seedling competition with pasture grasses. High seed predation, low seed germination, lack of nutrients, high light intensity, and rabbit herbivory also affect recovery. Successful strategies to facilitate recovery in abandoned pastures must simultaneously overcome numerous obstacles. Our research shows that establishment of woody species, either native tree seedlings or early-successional shrubs, can be successful in facilitating recovery, by enhancing seed dispersal and shading out pasture grasses. On the contrary, bird perching structures alone are not an effective strategy, because they only serve to enhance seed dispersal but do not reduce grass cover. Remnant pasture trees can serve as foci of natural recovery and may enhance growth of planted seedlings. Our results highlight the importance of: (1) understanding the basic biology of an ecosystem to design effective restoration strategies; (2) comparing results across a range of sites to determine which restoration strategies are most generally useful; and (3) considering where best to allocate efforts in large-scale restoration projects. [source] Linking ecological function to species composition in ecological restoration: Seed removal by ants in recreated woodlandAUSTRAL ECOLOGY, Issue 7 2009BORIS LOMOV Abstract Evaluations of ecological restoration typically focus on associating measures of structural properties of ecosystems (e.g. species diversity) with time since restoration efforts commenced. Such studies often conclude a failure to achieve restoration goals without examining functional performance of the organism assemblages in question. We compared diversity and composition of ant assemblages and the rates of seed removal by ants in pastures, 4- to 10-year old revegetated areas and remnants of Cumberland Plain Woodland, and an endangered ecological community in Sydney, Australia. Ant assemblages of forest remnant sites had significantly higher species richness, significantly different species composition and a more complex functional group structure in comparison with ant assemblages of pasture and revegetated sites, which did not differ significantly. However, the rates of seed removal by ants in revegetated sites were similar to those in forest remnants, with the rates in pasture sites being significantly lower. Approximately, one-third of all ant species were observed to remove seeds. Forest remnant sites had significantly different assemblages of seed removing ant species from those in pasture and revegetated sites. These results demonstrate that similar ant assemblages of unrestored and restored areas can function differently, depending on habitat context. Evaluation of restoration success by quantifying ecosystem structure and function offers more insights into ecosystem recovery than reliance on structural data alone. [source] Trophic-dynamic considerations in relating species diversity to ecosystem resilienceBIOLOGICAL REVIEWS, Issue 3 2000KRIS H. JOHNSON ABSTRACT Complexity in the networks of interactions among and between the living and abiotic components forming ecosystems confounds the ability of ecologists to predict the economic consequences of perturbations such as species deletions in nature. Such uncertainty hampers prudent decision making about where and when to invest most intensively in species conservation programmes. Demystifying ecosystem responses to biodiversity alterations may be best achieved through the study of the interactions allowing biotic communities to compensate internally for population changes in terms of contributing to ecosystem function, or their intrinsic functional redundancy. Because individual organisms are the biologically discrete working components of ecosystems and because environmental changes are perceived at the scale of the individual, a mechanistic understanding of functional redundancy will hinge upon understanding how individuals' behaviours influence population dynamics in the complex community setting. Here, I use analytical and graphical modelling to construct a conceptual framework for predicting the conditions under which varying degrees of interspecific functional redundancy can be found in dynamic ecosystems. The framework is founded on principles related to food web successional theory, which provides some evolutionary insights for mechanistically linking functional roles of discrete, interacting organisms with the dynamics of ecosystems because energy is the currency both for ecological fitness and for food web commerce. Net productivity is considered the most contextually relevant ecosystem process variable because of its socioeconomic significance and because it ultimately subsumes all biological processes and interactions. Redundancy relative to productivity is suggested to manifest most directly as compensatory niche shifts among adaptive foragers in exploitation ecosystems, facilitating coexistence and enhancing ecosystem recovery after disturbances which alter species' relative abundances, such as extinctions. The framework further explicates how resource scarcity and environmental stochasticity may constitute ,ecosystem legacies' influencing the emergence of redundancy by shaping the background conditions for foraging behaviour evolution and, consequently, the prevalence of compensatory interactions. Because it generates experimentally testable predictions for a priori hypothesis testing about when and where varying degrees of functional redundancy are likely to be found in food webs, the framework may be useful for advancing toward the reliable knowledge of biodiversity and ecosystem function relations necessary for prudent prioritization of conservation programmes. The theory presented here introduces explanation of how increasing diversity can have a negative influence on ecosystem sustainability by altering the environment for biotic interactions - and there by changing functional compensability among biota - under particular conditions. [source] |