Home About us Contact | |||
Ecological Relevance (ecological + relevance)
Selected AbstractsEcological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental changeGLOBAL CHANGE BIOLOGY, Issue 11 2010D. K. A. BARNES Abstract The relevance of laboratory experiments in predicting effects of climate change has been questioned, especially in Antarctica where sea temperatures are remarkably stable. Laboratory studies of Southern Ocean marine animal capacities to survive increasing temperature mainly utilize rapid temperature elevations, 100 ×,10 000 × faster than sea temperature is predicted to rise. However, due to small-scale temperature fluctuations these studies may be crucial for understanding colonization patterns and predicting survival particularly through interactions between thermal tolerance and migration. The colonization of disjunct shelves around Antarctica by larvae or adult drift requires crossing or exposure to, rapid temperature changes of up to 2,4 °C over days to weeks. Analyses of responses to warming at varying rates of temperature change in the laboratory allow better predictions of the potential species have for colonizing disjunct shelf areas (such as the Scotia Arc). Inhabiting greater diversities of localities increases the geographic and thermal range species experience. We suggest a strong link between short-term temperature tolerance, environmental range and prospects for surviving changing environments. [source] Ecological relevance of temporal stability in regional fish catchesJOURNAL OF FISH BIOLOGY, Issue 5 2003H. Hinz The concept of habitat selection based on ,Ideal Free Distribution' theory suggests that areas of high suitability may attract larger quantities of fishes than less suitable or unsuitable areas. Catch data were used from groundfish surveys to identify areas of consistently high densities of whiting Merlangius merlangus, cod Gadus morhua and haddock Melanogrammus aeglefinus in the Irish Sea and plaice Pleuronectes platessa, sole Solea solea, lemon sole Microstomus kitt in the English Channel over a period of 10 and 9 years respectively. A method was introduced to delineate areas of the seabed that held consistently high numbers of fishes objectively from large datasets. These areas may constitute important habitat characteristics which may merit further scientific investigations in respect to ,Essential Fish Habitats'(EFH). In addition, the number of stations with consistently high abundances of fishes and the number of stations where no fishes were caught gave an indication of the site specificity of the fish species analysed. For the gadoids, whiting was found to be less site specific than cod and haddock, while for the flatfishes, plaice and sole were less site specific than lemon sole. The findings are discussed in the context of previously published studies on dietary specializm. The site specificity of demersal fishes has implications for the siting process for marine protected areas as fish species with a strong habitat affinity can be expected to benefit more from such management schemes. [source] Cholinesterase and glutathione- S -transferase activities in freshwater invertebrates as biomarkers to assess pesticide contaminationENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2010Inês Domingues Abstract Studies investigating the use of biomarkers in pesticide risk assessment have greatly increased in recent years; however, issues concerning the ecological meaning of enzymatic responses have proved controversial. Ideally a good biomarker response should be modulated by the environmental contaminants alone and demonstrate a predictable behavior towards certain types of toxins. As these premises are rarely observed, the present study aims to outline research that has contributed to an understanding of the behavior of two widely used biomarkers, cholinesterase and glutathione- S -transferase, describing environmental and biotic factors that affect their response in freshwater invertebrates. Studies were performed in the main classes of aquatic invertebrates with these biomarkers and conclusions were reached concerning their behavior towards the main classes of pesticides. Links between biomarker responses and conventional endpoints were evaluated so that ecological relevance could be attributed to enzymatic responses. Toxicity of mixtures was investigated, and cases of synergism and antagonism were pointed out as factors changing the expected toxicity of aquatic systems and leading to misinterpretations of biomarker responses. Finally, the use of biomarkers as a tool for biomonitoring and in situ assays was investigated, with discussion of advantages and disadvantages of their use. Environ. Toxicol. Chem. 2010;29:5,18. © 2009 SETAC [source] Quantifying the impact of groundwater discharge on the surface,subsurface exchangeHYDROLOGICAL PROCESSES, Issue 15 2009Fulvio Boano Abstract The exchange of oxygen and nutrients between the well-aerated stream water and the subsurface water is crucial for the biochemical conditions of the hyporheic zone. The metabolic activity of the hyporheic microorganisms controls the fate of nitrogen and phosphorus in the pore water, and influences the fate of these nutrients at the catchment scale. Unfortunately, the incomplete knowledge of the complex hydrodynamics of the coupled surface-subsurface flow field often hinders the understanding of the ecological relevance of the hyporheic processes. Here, we analyse the influence of groundwater discharge through the streambed on bedform-induced hyporheic exchange. A simple mathematical model of a coupled stream-aquifer system is developed in order to describe the essential feature of the surface-subsurface exchange. The most representative characteristics of the hyporheic exchange, e.g. the depth of the hyporheic zone - are parametrized in terms of a small number of easily measurable quantities. This information on the hyporheic flow field provides the fundamental basis for the study of the ecological function of the hyporheic zone. Copyright © 2009 John Wiley & Sons, Ltd. [source] In situ-based effects measures: Determining the ecological relevance of measured responsesINTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 2 2007Donald J Baird Abstract The aim of this review is to examine how the choice of test species and study design employed in the use of in situ approaches in ecological risk assessment can maximize the ecological relevance of data. We provide a framework to define and assess ecological relevance that permits study designs to remain focused on the ecological question being addressed. This framework makes explicit the linkages between effects at lower levels of biological organization and higher-order ecological effects at the population, community, and ecosystem levels. The usefulness of this framework is illustrated by reference to specific examples from aquatic ecotoxicology. The use of models as both interpretive and predictive tools is discussed, with suggestions of appropriate methods for different protection goals. [source] Comparison of two plant functional approaches to evaluate natural restoration along an old-field , deciduous forest chronosequenceJOURNAL OF VEGETATION SCIENCE, Issue 2 2009Isabelle Aubin Abstract Question: Are direct and indirect trait-based approaches similar in their usefulness to synthesize species responses to successional stages? Location: Northern hardwood forests, Québec, Canada (45°01,,45°08,N; 73°58,,74°21,W). Methods: Two different trait-based approaches were used to relate plant functional traits to succession on an old-field , deciduous forest chronosequence: (i) a frequently used approach based on co-occurrence of traits (emergent groups), and (ii) a new version of a direct functional approach at the trait level (the fourth-corner method). Additionally, we selected two different cut-off levels for the herb subset of the emergent group classification in order to test its robustness and ecological relevance. Results: Clear patterns of trait associations with stand developmental stages emerged from both the emergent group and the direct approach at the trait level. However, the emergent group classification was found to hide some trait-level differences such as a shift in seed size, light requirement and plant form along the chronosequence. Contrasting results were obtained for the seven or nine group classification of the herbaceous subset, illustrating how critical is the number of groups for emergent group classification. Conclusion: The simultaneous use of two different trait-based approaches provided a robust and comprehensive characterization of vegetation responses in the old-field , deciduous forest chronosequence. It also underlines the different goals as well as the limitations and benefits of these two approaches. Both approaches indicated that abandoned pastures of the northern hardwood biome have good potential for natural recovery. Conversion of these lands to other functions may lead to irremediable loss of biodiversity. [source] PAR and UV Effects on Vertical Migration and Photosynthesis in Euglena gracilis,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Peter Richter Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m,2, UV-A 32.6 W m,2, UV-B 1.9 W m,2). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again. [source] Fluctuations in the incubation moisture environment affect growth but not survival of hatchling lizardsBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010TRAVIS R. ROBBINS Few studies have collected longitudinal data that follow the complete microevolutionary path of an organism linking sources of variation (e.g. environmental versus genetic) to a trait and its subsequent relationship with fitness. Identifying the links within this pathway is imperative for understanding the ecological relevance of effects found at the phenotypic level. Furthermore, experimental studies that examine parts of the pathway in ectothermic organisms often fail to mimic the complexities of the natural developmental environment. Temperature and moisture conditions in reptile nests, for example, can fluctuate greatly on a seasonal and daily basis. Despite the potential effects of fluctuating environments, the vast majority of studies have held environmental treatments constant during the developmental period. We investigated the effects of fluctuating moisture regimes during incubation on eggs, hatchling phenotypes, and subsequent survival in the eastern fence lizard Sceloporus undulatus. Moisture fluctuations during embryonic development caused water absorption by eggs to follow the environmental availability of moisture. Initial hatchling tail length was affected by the pattern of moisture fluctuations, and hatchling growth rates in fluctuating treatments were significantly faster than those in a constant treatment, resulting in larger hatchlings after 4 weeks. A release,recapture experiment conducted in the field did not detect a treatment effect on survival despite the larger body sizes. In summary, although fluctuations affected water absorption by eggs and some hatchling traits, these effects did not have subsequent fitness consequences. The results obtained suggest that egg and hatchling survival are buffered against natural soil moisture fluctuations during incubation, even when egg and hatchling traits are significantly affected. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 89,102. [source] |