Ecological Differences (ecological + difference)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Ecological Differences in Weight, Length, and Weight for Length of Mexican American Children in the WIC Program

JOURNAL FOR SPECIALISTS IN PEDIATRIC NURSING, Issue 3 2008
Elizabeth Reifsnider PhD, WHNP
PURPOSE.,Examine factors common in the environments of children who obtain services from a WIC program to determine if differences in ecological/environmental factors can be found in the children who differ in weight, length, and weight for length. DESIGN AND METHODS.,Cross-sectional study of 300 children, 100 each who were stunted, normal weight for length, or overweight. Instruments used were NCATS, ARSMA II, 24-hr diet recall, and Baecke Activity Questionnaire. RESULTS.,Significant differences were present in children's diet, parents' BMI, parents' generation in United States, parents' activity levels, and maternal,child relationship. PRACTICE IMPLICATIONS.,Encourage parents to adopt family approaches to encourage normal body size in children. [source]


DUSKY DOLPHIN (LAGENORHYNCHUS OBSCURUS) FORAGING IN TWO DIFFERENT HABITATS: ACTIVE ACOUSTIC DETECTION OF DOLPHINS AND THEIR PREY

MARINE MAMMAL SCIENCE, Issue 2 2004
Kelly J. Benoit-Bird
Abstract Active-acoustic surveys were used to determine the distribution of dusky dolphins and potential prey in two different New Zealand locations. During seven survey days off Kaikoura Canyon, dusky dolphins were found within the DeepScattering Layer (DSL) at 2000 when it rose to within 125 m of the surface. As the DSL rose to 30 m at 0100, the observed depth of dolphins decreased, presumably as the dolphins followed the vertical migration of their prey. Acoustically identified subgroups of coordinated animals ranged from one to five dolphins. Time, depth of layer, and layer variance contributed significantly to predicting foraging dusky dolphin subgroup size. In the much shallower and more enclosed Admiralty Bay, dolphins noted at the surface as foraging were always detected with the sonar, but were never observed in coordinated subgroups during the brief (two-day) study there. In Admiralty Bay dolphin abundance was correlated with mean volume scattering from potential prey in the water column; and when volume scattering, an index of prey density, was low, dolphins were rarely present. Ecological differences between the deep waters of Kaikoura Canyon and the shallow nearshore waters of Admiralty Bay may result in differences in how, when, and in what social groupings dusky dolphins forage. [source]


Habitat fragmentation and adaptation: a reciprocal replant,transplant experiment among 15 populations of Lychnis flos-cuculi

JOURNAL OF ECOLOGY, Issue 5 2008
Gillianne Bowman
Summary 1Habitat fragmentation and variation in habitat quality can both affect plant performance, but their effects have rarely been studied in combination. We thus examined plant performance in response to differences in habitat quality for a species subject to habitat fragmentation, the common but declining perennial herb Lychnis flos-cuculi. 2We reciprocally transplanted plants between 15 fen grasslands in north-east Switzerland and recorded plant performance for 4 years. 3Variation between the 15 target sites was the most important factor and affected all measures of plant performance in all years. This demonstrates the importance of plastic responses to habitat quality for plant performance. 4Plants from smaller populations produced fewer rosettes than plants from larger populations in the first year of the replant,transplant experiment. 5Plant performance decreased with increasing ecological difference between grassland of origin and target grassland, indicating adaptation to ecological conditions. In contrast, plant performance was not influenced by microsatellite distance and hardly by geographic distance between grassland of origin and target grassland. 6Plants originating from larger populations were better able to cope with larger ecological differences between transplantation site and site of origin. 7Synthesis: In addition to the direct effects of target grasslands, both habitat fragmentation, through reduced population size, and adaptation to habitats of different quality, contributed to the performance of L. flos-cuculi. This underlines that habitat fragmentation also affects species that are still common. Moreover, it suggests that restoration projects involving L. flos-cuculi should use plant material from large populations living in habitats similar to the restoration site. Finally, our results bring into question whether plants in small habitat remnants will be able to cope with future environmental change. [source]


Profiling invasive fish species: the importance of phylogeny and human use

DIVERSITY AND DISTRIBUTIONS, Issue 4 2005
Carles Alcaraz
ABSTRACT Understanding the ecological differences between native and invasive species is of considerable scientific and practical interest. We examined such differences between native and invasive inland fish species from the Iberian Peninsula in order to analyse the importance of phylogenetic correction and variability (in addition to central tendency). We collected 26 quantitative and qualitative variables on the ecology, life-history traits and human use of the 69 inland fish species of the Iberian Peninsula, including native, invasive and migratory species. The taxonomic distribution of invasive fish species deviated significantly from world freshwater richness and in contrast to native species, invasive fish belongs to only five taxonomic orders but to a wide spectrum of families not native to the Iberian Peninsula. Because the life-history traits were highly dependent on taxonomy, the results, with or without applying phylogenetic methods, differed and after accounting for phylogeny, invasive species displayed higher and wider latitude in general and a different reproductive season mainly among salmonids and cyprinids. Human use was also significantly different between native and invasive fish species and produced more variability in life-history traits of invasive species and uneven taxonomic distribution because of the high diversity of species introduced. We show that accounting for taxonomy and studying variability in addition to central tendency is important in the comparison of life-history traits between native and invasive species. [source]


Correlated morphological and colour differences among females of the damselfly Ischnura elegans

ECOLOGICAL ENTOMOLOGY, Issue 3 2009
JESSICA K. ABBOTT
Abstract 1.,The female-limited colour polymorphic damselfly Ischnura elegans has proven to be an interesting study organism both as an example of female sexual polymorphism, and in the context of the evolution of colour polymorphism, as a model of speciation processes. 2.,Previous research suggests the existence of correlations between colour morph and other phenotypic traits, and the different female morphs in I. elegans may be pursuing alternative phenotypically integrated strategies. However, previous research on morphological differences in southern Swedish individuals of this species was only carried out on laboratory-raised offspring from a single population, leaving open the question of how widespread such differences are. 3.,The present study therefore analysed multi-generational data from 12 populations, investigating morphological differences between the female morphs in the field, differences in the pattern of phenotypic integration between morphs, and quantified selection on morphological traits. 4.,It was found that consistent morphological differences indeed existed between the morphs across populations, confirming that the previously observed differences were not simply a laboratory artefact. It was also found, somewhat surprisingly, that despite the existence of sexual dimorphism in body size and shape, patterns of phenotypic integration differed most between the morphs and not between the sexes. Finally, linear selection gradients showed that female morphology affected fecundity differently between the morphs. 5.,We discuss the relevance of these results to the male mimicry hypothesis and to the existence of potential ecological differences between the morphs. [source]


PERSPECTIVE: SEX, RECOMBINATION, AND THE EFFICACY OF SELECTION,WAS WEISMANN RIGHT?

EVOLUTION, Issue 2 2000
Austin Burt
Abstract., The idea that sex functions to provide variation for natural selection to act upon was first advocated by August Weismann and it has dominated much discussion on the evolution of sex and recombination since then. The goal of this paper is to further extend this hypothesis and to assess its place in a larger body of theory on the evolution of sex and recombination. A simple generic model is developed to show how fitness variation and covariation interact with selection for recombination and illustrate some important implications of the hypothesis: (1) the advantage of sex and recombination can accrue both to reproductively isolated populations and to modifiers segregating within populations, but the former will be much larger than the latter; (2) forces of degradation that are correlated across loci within an individual can reduce or reverse selection for increased recombination; and (3) crossing-over (which can occur at different places in different meioses) will create more variability than having multiple chromosomes and so will have more influence on the efficacy of selection. Several long-term selection experiments support Weismann's hypothesis, including those showing a greater response to selection in populations with higher rates of recombination and higher rates of recombination evolving as a correlated response to selection for some other character. Weismann's hypothesis is also consistent with the sporadic distribution of obligate asexuality, which indicates that clones have a higher rate of extinction than sexuals. Weismann's hypothesis is then discussed in light of other patterns in the distribution of sexuality versus asexuality. To account for variation in the frequency of obligate asexuality in different taxa, a simple model is developed in which this frequency is a function of three parameters: the rate of clonal origin, the initial fitness of clones when they arise, and the rate at which that fitness declines over time. Variation in all three parameters is likely to be important in explaining the distribution of obligate asexuality. Facultative asexuality also exists, and for this to be stable it seems there must be ecological differences between the sexual and asexual propagules as well as genetic differences. Finally, the timing of sex in cyclical parthenogens is most likely set to minimize the opportunity costs of sex. None of these patterns contradict Weismann's hypothesis, but they do show that many additional principles unrelated to the function of sex are required to fully explain its distribution. Weismann's hypothesis is also consistent with what we know about the mechanics and molecular genetics of recombination, in particular the tendency for chromatids to recombine with a homolog rather than a sister chromatid at meiosis, which is opposite to what they do during mitosis. However, molecular genetic studies have shown that cis -acting sites at which recombination is initiated are lost by gene conversion as a result, a factor that can be expected to affect many fine details in the evolution of recombination. In summary, although Weismann's hypothesis must be considered the leading candidate for the function of sex and recombination, nevertheless, many additional principles are needed to fully account for their evolution. [source]


Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat

FUNCTIONAL ECOLOGY, Issue 1 2010
Peter O. Dunn
Summary 1.,Female preferences for particular male ornaments may shift between populations as a consequence of ecological differences that change the reliability and detectability of the ornament, but few studies have examined how ornaments function in different populations. 2.,We examined the signalling function of male plumage ornaments in a warbler, the common yellowthroat (Geothlypis trichas), breeding in New York (NY) and Wisconsin (WI), USA. Males have two prominent ornaments: a black facial mask pigmented with melanin and a yellow bib pigmented by carotenoids. Previous studies in WI indicate that the size of the mask, and not the bib, is primarily related to female choice and male reproductive success. In NY, however, the pattern is reversed and attributes of the bib (size and colour), and not the mask, are the target of sexual selection. 3.,We found that brightness of the yellow bib was the best signal of humoral immunity (immunoglobulin G) in NY and mask size was the best signal in WI, after controlling for breeding experience and capture date. Thus, similar aspects of male quality appeared to be signalled by different ornaments in different populations. 4.,There was no difference between populations in the level of plasma carotenoids or the prevalence of malarial parasites, which may affect the costs and benefits of choosing males with particular ornaments in each location. 5.,Even though females in different populations prefer different ornaments produced by different types of pigments, these ornaments appear to be signalling similar aspects of male quality. Our results caution against inferring the function of particular ornaments based simply on their type of pigment. [source]


Large-scale plant light-use efficiency inferred from the seasonal cycle of atmospheric CO2

GLOBAL CHANGE BIOLOGY, Issue 8 2004
Christopher J. Still
Abstract We combined atmospheric CO2 measurements, satellite observations, and an atmospheric transport model in an inverse modeling framework to infer a key property of vegetation physiology, the light-use efficiency (LUE) of net primary production, for large geographic regions. We find the highest LUE in boreal regions and in the northern hemisphere tropics. Within boreal zones, Eurasian LUE is higher than North American LUE and has a distinctly different seasonal profile. This longitudinal asymmetry is consistent with ecological differences expected from the much greater cover of deciduous vegetation in boreal Eurasia caused by the vast Siberian forests of the deciduous conifer, Larch. Inferred LUE of the northern hemisphere tropics is also high and displays a seasonal profile consistent with variations of both cloud cover and C4 vegetation activity. [source]


Atlantic reef fish biogeography and evolution

JOURNAL OF BIOGEOGRAPHY, Issue 1 2008
S. R. Floeter
Abstract Aim, To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location, Atlantic Ocean. Methods, The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results, Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ,filters' by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic. Main conclusions, Our data set indicates that both historical events (e.g. Tethys closure) and relatively recent dispersal (with or without further speciation) have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns we observe today; however, examples of the latter process outnumber those of the former. [source]


Patch occupancy of North American mammals: is patchiness in the eye of the beholder?

JOURNAL OF BIOGEOGRAPHY, Issue 8 2003
Robert K. Swihart
Abstract Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non-random distributions in which local assemblages of species-poor patches are nested subsets of assemblages occupying more species-rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ,ecological' hypotheses and the ,physical landscape' hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non-volant mammals and twenty networks consisting of four to seventy-five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species-specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time-scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems. [source]


Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific

JOURNAL OF ECOLOGY, Issue 1 2010
Gunnar Keppel
Summary 1.,Testing the comparative strength and influence of age and area of islands, proximity of source propagules and disturbances on community assembly, species diversity and vegetation structure has proved difficult at large scales. The little-studied rain forests in the Tropical South Pacific (TSP) provide a unique study area to investigate determinants of community dynamics, with islands varying in age, isolation, area and cyclone frequency. We tested the effects of biogeographical factors and cyclone frequency on the species composition, species diversity and forest structure of old-growth rain forest using 1-ha inventory plots on 12 islands between New Guinea and the Solomon Islands. 2.,As predicted by the General Dynamic Model of Oceanic Island Biogeography, the biogeographical variables of archipelago age and island area are the most important factors affecting species richness and diversity, with older and larger islands having higher richness and diversity. There is no significant effect of cyclone frequency on species diversity. 3.,The theory that diversity drives endemism is not supported in this system as endemism is not correlated with species diversity. Instead, age and isolation of an island best explain patterns of endemism, with the latter suggesting dispersal limitations between archipelagos. 4.,Proximity to source area influences species composition of lowland tropical rain forests in the TSP, which is also supported by a strong correlation between geographic distance and floristic similarity. Vector-fitting onto non-metric multidimensional scaling suggests that archipelago age and cyclone frequency may, in addition to proximity to source area, influence species composition. This implies that a species' tolerance to cyclones affects its abundance at different cyclone frequencies. 5.,Synthesis. Both biogeographical variables (island area and isolation) and cyclone frequency appear to affect community assembly in lowland rain forests in the TSP. While species are hence not ecologically equivalent, interspecific ecological differences do not seem to affect the overall patterns of species diversity, which are mostly determined by biogeographical variables, as predicted by the neutral theory. [source]


Habitat fragmentation and adaptation: a reciprocal replant,transplant experiment among 15 populations of Lychnis flos-cuculi

JOURNAL OF ECOLOGY, Issue 5 2008
Gillianne Bowman
Summary 1Habitat fragmentation and variation in habitat quality can both affect plant performance, but their effects have rarely been studied in combination. We thus examined plant performance in response to differences in habitat quality for a species subject to habitat fragmentation, the common but declining perennial herb Lychnis flos-cuculi. 2We reciprocally transplanted plants between 15 fen grasslands in north-east Switzerland and recorded plant performance for 4 years. 3Variation between the 15 target sites was the most important factor and affected all measures of plant performance in all years. This demonstrates the importance of plastic responses to habitat quality for plant performance. 4Plants from smaller populations produced fewer rosettes than plants from larger populations in the first year of the replant,transplant experiment. 5Plant performance decreased with increasing ecological difference between grassland of origin and target grassland, indicating adaptation to ecological conditions. In contrast, plant performance was not influenced by microsatellite distance and hardly by geographic distance between grassland of origin and target grassland. 6Plants originating from larger populations were better able to cope with larger ecological differences between transplantation site and site of origin. 7Synthesis: In addition to the direct effects of target grasslands, both habitat fragmentation, through reduced population size, and adaptation to habitats of different quality, contributed to the performance of L. flos-cuculi. This underlines that habitat fragmentation also affects species that are still common. Moreover, it suggests that restoration projects involving L. flos-cuculi should use plant material from large populations living in habitats similar to the restoration site. Finally, our results bring into question whether plants in small habitat remnants will be able to cope with future environmental change. [source]


Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2006
C. VORBURGER
Abstract Parthenogenetic organisms often harbour substantial genotypic diversity. This diversity may be the result of recurrent formations of new clones, or it may be maintained by environmental heterogeneity acting on ecological differences among clones. In aphids, both processes may be important because obligate and cyclical parthenogens can form mixed populations. Using microsatellites, I analysed the temporal dynamics of clonal diversity in such a population of the aphid Myzus persicae over a 1-year period. The frequency distribution of clonal genotypes was very skewed, with many rare and few common clones. The relative frequencies of common clones underwent strong and rapid changes indicative of intense clonal selection. Differences in their host associations suggest that these shifts may partly be caused by changes in the abundance of annual host plants. Other selective factors of potential importance are also discussed. New, sexually produced genotypes made a minor contribution to clonal diversity, consistent with the observed heterozygote excess characteristic of predominantly asexual populations in M. persicae. [source]


Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands

MOLECULAR ECOLOGY, Issue 20 2010
ARNAUD BATAILLE
Abstract Characterization of the fine-scale population dynamics of the mosquito Aedes taeniorhynchus is needed to improve our understanding of its role as a disease vector in the Galapagos Islands. We used microsatellite data to assess the genetic structure of coastal and highland mosquito populations and patterns of gene flow between the two habitats through time on Santa Cruz Island. In addition, we assessed possible associations of mosquito abundance and genetic diversity with environmental variables. The coastal and highland mosquito populations were highly differentiated from each other all year round, with some gene flow detected only during periods of increased precipitation. The results support the hypothesis that selection arising from ecological differences between habitats is driving adaptation and divergence in A. taeniorhynchus, and maintaining long-term genetic differentiation of the populations against gene flow. The highland and lowland populations may constitute an example of incipient speciation in progress. Highland populations were characterized by lower observed heterozygosity and allelic richness, suggesting a founder effect and/or lower breeding site availability in the highlands. A lack of reduction in genetic diversity over time in highland populations suggests that they survive dry periods as dormant eggs. Association between mosquito abundance and precipitation was strong in the highlands, whereas tide height was the main factor affecting mosquito abundance on the coast. Our findings suggests differences in the infection dynamics of mosquito-borne parasites in the highlands compared to the coast, and a higher risk of mosquito-driven disease spread across these habitats during periods of increased precipitation. [source]


Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis

MOLECULAR ECOLOGY, Issue 3 2000
N. R. Lovejoy
Abstract Phylogenetic relationships of populations and species within Potamorrhaphis, a genus of freshwater South American needlefishes, were assessed using mitochondrial cytochrome b sequences. Samples were obtained from eight widely distributed localities in the Amazon and Orinoco rivers, and represented all three currently recognized species of Potamorrhaphis. The phylogeny of haplotypes corresponded imperfectly to current morphological species identities: haplotypes from P. guianensis, the most widespread species, did not make up a monophyletic clade. Geography played a strong role in structuring genetic variation: no haplotypes were shared between any localities, indicating restricted gene flow. Possible causes of this pattern include limited dispersal and the effects of current and past geographical barriers. The haplotype phylogeny also showed a complex relationship between fishes from different river basins. Based on the geographical distribution of clades, we hypothesize a connection between the middle Orinoco and Amazon via rivers of the Guianas. More ancient divergence events may have resulted from Miocene alterations of river drainage patterns. We also present limited data for two other Neotropical freshwater needlefish genera: Belonion and Pseudotylosurus. Pseudotylosurus showed evidence of substantial gene flow between distant localities, indicating ecological differences from Potamorrhaphis. [source]


Relationships beliefs and relationship quality across cultures: Country as a moderator of dysfunctional beliefs and relationship quality in three former Communist societies

PERSONAL RELATIONSHIPS, Issue 3 2004
Robin Goodwin
Research on the correlation between relationship beliefs and quality has rarely considered the impact of culture. In this study, 206 manual workers, students, and entrepreneurs from Georgia, Hungary, and Russia completed a modified Relationship Beliefs Inventory (Eidelson & Epstein, 1982, Journal of Consulting and Clinical Psychology, 50, 715) and the Abbreviated Dyadic Adjustment Scale (Sharpley & Rogers, 1984, Educational and Psychological Measurement, 44, 1045). Results indicated a significant pan-cultural correlation between dysfunctional beliefs and relationship quality but a moderating effect for country, with dysfunctional beliefs in Hungary explaining more than four times of the variance in relationship quality than in the other countries. Findings are interpreted in light of major value and ecological differences between the three countries. [source]


Blood pressure, seasonal body fat, heart rate, and ecological differences in Caboclo populations of the Brazilian Amazon

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2006
H.P. Silva
This study compares blood pressure (BP) and related cardiovascular risk factors among three Caboclo communities from the Brazilian Amazon. Its purpose is to investigate possible risk differentials related to variable ecological settings and Western influences. Caxiuanã is characterized as a more "traditional" group, while Aracampina and Santana are viewed as more "transitional" in lifestyle. A total of 348 subjects from the three communities were evaluated in the wet or the dry season or in both. Measurements across the communities were compared by season and sex. Results suggest little seasonal variation in average BP, BP change, body fat, or body fat change among men. Conversely, there is substantial seasonal and intercommunity variation among women. Additional analyses reveal (1) an inconsistent association between age and BP across the communities; (2) that BMI is not associated with BP transitional communities in either season but is associated with both systolic and diastolic pressure in the most traditional community; and (3) little to no sex effect on BP. These results suggest increased Western influence affects body composition particularly of women. However, increased BMI and fat among transitional Caboclo women does not directly translate into higher BP; rather, their BP appears to be more affected by seasonal stresses. Finally, conditions during the wet season diminish age-related variation in BP, suggesting that during the wet season these Caboclo may be less active. Am. J. Hum. Biol. 18:10,22, 2006. © 2005 Wiley-Liss, Inc. [source]


Are the gorillas in Bwindi Impenetrable National Park "true" mountain gorillas?

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2010
Alison A. Elgart
Abstract The gorillas that inhabit Bwindi Impenetrable National Park in Uganda are the least known of the eastern gorillas. Because they are an allopatric population living a minimum of 25 km from the well-studied population of mountain gorillas (Gorilla beringei beringei) in Rwanda and have certain morphological and ecological differences from these gorillas, their taxonomic status has been in question in recent years. This study presents new craniodental metrics from Bwindi individuals and compares them to Virunga individuals as well as to eastern lowland gorillas, G. gorilla graueri. Multivariate statistics, including MANCOVA, least-squares, regression, and principal components analyses, were used to evaluate how closely the Bwindi crania resemble the Virunga crania and how both relate to G. g. graueri. Results indicate that the Bwindi gorillas have generally smaller crania than the Virunga gorillas, but when metrics are log-transformed, the only variable that distinguishes the Bwindi individuals is a longer face. When both populations are compared to G. g. graueri, they cluster together separately from the eastern lowland gorillas, sharing such features as higher rami, wider bigonia, longer mandibles, and wider and shorter mandibular symphyses in relation to G. g. graueri. Functional morphological explanations for these differences are discussed, but lacking measurements of the physical properties of G. g. graueri, they cannot fully be explained. Results clearly indicate that at least pertaining to the cranium, upon which most gorilla taxonomy is based, the Bwindi gorillas are proper mountain gorillas (G. b. beringei). Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex

ANIMAL CONSERVATION, Issue 2 2009
B. Gebremedhin
Abstract Knowledge about the phylogenetic history, genetic variation and ecological requirements of a species is important for its conservation and management. Unfortunately, for many species this information is lacking. Here we use multiple approaches (phylogenetics, population genetics and ecological modelling) to evaluate the evolutionary history and conservation status of Capra walie, an endangered flagship species of wild goat endemic to Ethiopia. The analysis of mitochondrial cytochrome b and Y-chromosome DNA sequences suggests that C. walie forms a monophyletic clade with Capra nubiana, but potentially has been isolated for up to 0.8 million years from this closely related species. Microsatellite DNA analyses show that C. walie has very low genetic variation (mean heterozygosity=0.35) compared with other endangered mammals. This reduced variation likely derives from a prolonged demographic decline and small effective population size. Ecological niche modelling using the bioclimatic features of habitats occupied by C. walie, suggests ecological differences between C. walie and C. nubiana, and identifies the areas most suitable for future reintroductions of C. walie. The genetic and bioclimatic data suggest that C. walie is distinct and requires immediate conservation actions including genetic monitoring and reintroductions to establish independent populations. This study illustrates how combining noninvasive sampling along with genetic and ecological (bioclimatic) approaches can help assess conservation status of poorly known species. [source]


Empirical tests for ecological exchangeability

ANIMAL CONSERVATION, Issue 3 2005
Russell B. Rader
The concept of ecological exchangeability, together with genetic exchangeability, is central to both the Cohesion Species Concept as well as to some definitions of Evolutionarily Significant Units. While there are well-established criteria for measuring genetic exchangeability, the concept of ecological exchangeability has generated considerable confusion. We describe a procedure that uses the complementary strengths, while recognising the limitations, of both molecular genetic data and ecological experiments to determine the ecological exchangeability of local populations within a species. This is the first synthesis of a combined approach (experiments and genetics) and the first explicit discussion of testing ecological exchangeability. Although it would be ideal to find functional genes that interact to influence quantitative traits resulting in ecological differences (e.g. growth, size, fecundity), we suggest that our current knowledge of functional markers is too limited for most species to use them to differentiate adaptively different local populations. Thus, we argue that ecological experiments using whole organisms combined with neutral markers that indicate evolutionary divergence, provide the strongest case for detecting adaptive differences among local populations. Both genetic divergence and ecological experiments provide the best information for infering ecological exchangeability. This procedure can be used to decide which local populations should be preserved to maintain intraspecific variation and to determine which populations would enhance captive-breeding programs, augment endangered local populations and could best be used to re-introduce native species into historically occupied areas. [source]


A role for ecology in male mate discrimination of immigrant females in Calopteryx damselflies?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
MAREN WELLENREUTHER
Sexual selection against immigrants is a mechanism that can regulate premating isolation between populations but, so far, few field studies have examined whether males can discriminate between immigrant and resident females. Males of the damselfly Calopteryx splendens show mate preferences and are able to force pre-copulatory tandems. We related male mate responses to the ecological characteristics of female origin, geographic distances between populations, and morphological traits of females to identify factors influencing male mate discrimination. Significant heterogeneity between populations in male mate responses towards females was found. In some populations, males discriminated strongly against immigrant females, whereas the pattern was reversed or nonsignificant in other populations. Immigrant females were particularly attractive to males when they came from populations with similar predation pressures and densities of conspecifics. By contrast, immigrant females from populations with strongly dissimilar predation pressures and conspecific densities were not attractive to males. Differences in the abiotic environment appeared to affect mating success to a lesser degree. This suggests that male mate discrimination is context-dependent and influenced by ecological differences between populations, a key prediction of ecological speciation theory. The results obtained in the present study suggest that gene-flow is facilitated between ecologically similar populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 506,518. [source]


Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
MARC OREMUS
Pilot whales (Globicephala spp.) provide an interesting example of recently diverged oceanic species with a complex evolutionary history. The two species have wide but largely non-overlapping ranges. Globicephala melas (long-finned pilot whale; LFPW) has an antitropical distribution and is found in the cold-temperate waters of the North Atlantic and Southern Hemisphere, whereas Globicephala macrorhynchus (short-finned pilot whale; SFPW) has a circumglobal distribution and is found mainly in the tropics and subtropics. To investigate pilot whale evolution and biogeography, we analysed worldwide population structure using mitochondrial DNA (mtDNA) control region sequences (up to 620 bp) from a variety of sources (LFPW = 643; SFPW = 150), including strandings in New Zealand and Tasmania, and whale-meat products purchased on the markets of Japan and Korea. Phylogenetic reconstructions failed to support a reciprocal monophyly of the two species, despite six diagnostic substitutions, possibly because of incomplete lineage sorting or inadequate phylogenetic information. Both species had low haplotype and nucleotide diversity compared to other abundant widespread cetaceans (LFPW, , = 0.35%; SFPW, , = 0.87%) but showed strong mtDNA differentiation between oceanic basins. Strong levels of structuring were also found at the regional level. In LFPW, phylogeographic patterns were suggestive either of a recent demographic expansion or selective sweep acting on the mtDNA. For SFPW, the waters around Japan appear to represent a centre of diversity, with two genetically-distinct forms, as well as a third population of unknown origin. The presence of multiple unique haplotypes among SFPW from South Japan, together with previously documented morphological and ecological differences, suggests that the southern form represents a distinct subspecies and/or evolutionary significant unit. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 729,744. [source]


Seed plants of Fiji: an ecological analysis

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2006
MICHAEL HEADS
An annotated list of indigenous Fijian seed plant genera is presented and comprises 484 genera and 1315 species in 137 families. The relative diversity of the largest families and genera in Fiji is indicated and compared with floras in New Caledonia and the Upper Watut Valley, Papua New Guinea. Differences and similarities appear to be due to biogeographical/phylogenetic factors rather than ecological differences or means of dispersal. Generic diversity for the seed plants as a whole is greatest between 0,100 m and decreases monotonically with altitude. However, in the largest family, Orchidaceae, maximum diversity occurs between 200,400 m. Fifty percent of the families are recorded from shore habitat. Twenty-seven percent of the families and 80 species occur in or around mangrove, where the most diverse families are Orchidaceae, Rubiaceae, and the legumes. Some of the mangrove-associate species are pantropical or Indo-Pacific but most are locally or regionally endemic. Fifty-six percent of the Fijian families are recorded on limestone. Twenty-nine species are restricted to limestone and 12 species usually occur on limestone. The importance of calcium in reducing the effects of salinity is emphasized and 39 species are recorded from both mangrove and limestone. A plagiotropic habit occurs in 38 species which occur on limestone or around beaches, and 20 of these are Pacific endemics. Genera restricted to higher altitudes include many present elsewhere in Melanesia but absent from Australia despite suitable habitat there, again indicating the importance of biogeographical and historical factors. Altitudinal anomalies in Fiji taxa are cited and include 7 anomalously high records from northern Viti Levu, a site of major uplift, and 22 anomalously low altitudinal records in the Lau Group, a site of subsidence. It is suggested that the Fijian flora has not been derived from immigrants from Asia, but has evolved more or less in situ. Taxa would have survived as metapopulations on the individually ephemeral volcanic islands always found at oceanic subduction zones and hot spots, and the atolls which characterize areas of subsidence. The complex geology of Fiji is determined by its position between two subduction zones of opposite polarity, the Vanuatu and Tonga Trenches, in what is currently a region of transform faulting. The large islands comprise fragments of island arcs that have amalgamated and welded together. There has been considerable uplift as well as subsidence in the islands and it is suggested that both these processes have had drastic effects on the altitudinal range of the taxa. Limestone and mangrove floras could have provided a widespread, diverse ancestral species pool from which freshwater swamp forest, lowland rainforest, dry forest, secondary forest, thickets, and montane forest have been derived during phases of uplift. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89, 407,431. [source]