Home About us Contact | |||
Ecological Adaptation (ecological + adaptation)
Selected AbstractsEcological perspectives on the sequenced genome collectionECOLOGY LETTERS, Issue 12 2005Jennifer B. Hughes Martiny Abstract Our complete genome collection is one of our most valuable biological resources. A key challenge for the future is the interpretation of these genomes from an ecological perspective. In this review, we discuss current work at this increasingly important interface. In particular, we review ongoing work aimed at developing high quality data sets that combine ecological, environmental, evolutionary and genomic information. Such data will help to identify biases in the sequence collection and facilitate future discoveries about the nature of ecological adaptation at the genome level. These efforts will be greatly enhanced by the contributions of ecologists. [source] Variation in gene content among geographically diverse Sulfolobus isolatesENVIRONMENTAL MICROBIOLOGY, Issue 1 2008Dennis W. Grogan Summary The ability of competitive (i.e., comparative) genomic hybridization (CGH) to assess similarity across entire microbial genomes suggests that it should reveal diversification within and between natural populations of free-living prokaryotes. We used CGH to measure relatedness of genomes drawn from Sulfolobus populations that had been shown in a previous study to be diversified along geographical lines. Eight isolates representing a wide range of spatial separation were compared with respect to gene-specific tags based on a closely related reference strain (Sulfolobus solfataricus P2). For the purpose of assessing genetic divergence, 232 loci identified as polymorphic were assigned one of two alleles based on the corresponding fluorescence intensities from the arrays. Clustering of these binary genotypes was stable with respect to changes in the threshold and similarity criteria, and most of the groupings were consistent with an isolation-by-distance model of diversification. These results indicate that increasing spatial separation of geothermal sites correlates not only with minor sequence polymorphisms in conserved genes of Sulfolobus (demonstrated in the previous study), but also with the regions of difference (RDs) that occur between genomes of conspecifics. In view of the abundance of RDs in prokaryotic genomes and the relevance that some RDs may have for ecological adaptation, the results further suggest that CGH on microarrays may have advantages for investigating patterns of diversification in other free-living archaea and bacteria. [source] THE BIOLOGY OF SPECIATIONEVOLUTION, Issue 2 2010James M. Sobel Since Darwin published the "Origin," great progress has been made in our understanding of speciation mechanisms. The early investigations by Mayr and Dobzhansky linked Darwin's view of speciation by adaptive divergence to the evolution of reproductive isolation, and thus provided a framework for studying the origin of species. However, major controversies and questions remain, including: When is speciation nonecological? Under what conditions does geographic isolation constitute a reproductive isolating barrier? and How do we estimate the "importance" of different isolating barriers? Here, we address these questions, providing historical background and offering some new perspectives. A topic of great recent interest is the role of ecology in speciation. "Ecological speciation" is defined as the case in which divergent selection leads to reproductive isolation, with speciation under uniform selection, polyploid speciation, and speciation by genetic drift defined as "nonecological." We review these proposed cases of nonecological speciation and conclude that speciation by uniform selection and polyploidy normally involve ecological processes. Furthermore, because selection can impart reproductive isolation both directly through traits under selection and indirectly through pleiotropy and linkage, it is much more effective in producing isolation than genetic drift. We thus argue that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, we question whether the ecological speciation concept is useful. We also suggest that geographic isolation caused by adaptation to different habitats plays a major, and largely neglected, role in speciation. We thus provide a framework for incorporating geographic isolation into the biological species concept (BSC) by separating ecological from historical processes that govern species distributions, allowing for an estimate of geographic isolation based upon genetic differences between taxa. Finally, we suggest that the individual and relative contributions of all potential barriers be estimated for species pairs that have recently achieved species status under the criteria of the BSC. Only in this way will it be possible to distinguish those barriers that have actually contributed to speciation from those that have accumulated after speciation is complete. We conclude that ecological adaptation is the major driver of reproductive isolation, and that the term "biology of speciation," as proposed by Mayr, remains an accurate and useful characterization of the diversity of speciation mechanisms. [source] RELATIVE ROLE OF GENETIC DETERMINATION AND PLASTIC RESPONSE DURING ONTOGENY FOR SHELL-SHAPE TRAITS SUBJECTED TO DIVERSIFYING SELECTIONEVOLUTION, Issue 5 2009Paula Conde-Padín We studied the relative role of genetic determination versus plastic response for traits involved in ecological adaptation of two ecotypes of Littorina saxatilis living at different shore levels. To investigate the magnitude of the plastic response across ontogeny, we compared morphological data from individuals grown in the laboratory and taken from the wild at three developmental stages: shelled embryos, juveniles, and adults. The results indicate that most shell shape variation (72,99%) in adaptive traits (globosity and aperture of the shell) is explained by the ecotype irrespective of the growth environment, suggesting that direct genetic determination is the main factor responsible for the process of adaptation in the wild. There was a tendency for the contribution of plasticity to increase over ontogeny but, in general, the direction of the plastic response did not suggest that this was adaptive. [source] Reciprocal insights into adaptation from agricultural and evolutionary studies in tomatoEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 5-6 2010Leonie C. Moyle Abstract Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution. [source] China's Minorities, Cultural Change, and Ethnic IdentityHISTORY COMPASS (ELECTRONIC), Issue 1 2005Donald S. Sutton China's non-Han ethnic groups have been precipitated both through assimilation and territorial expulsion at the hands of the agriculturalists who gradually formed the Han Chinese majority and became the basis of empire, and by the last dynasty's incorporation of the thinly populated regions to the west and north. Recent research distinguishes assimilation from acculturation, indicating that both may occur at local initiative on local terms, and in the non-Han as well as the Han direction. New ethnicities have emerged through ecological adaptation and isolation. China's recognized minorities continue to play an important role in defining both the self-image of Han Chinese and China's identity as a modern nation-state. [source] A quantitative comparison of the ontogeny of two closely-related Upper Devonian phacopid trilobitesLETHAIA, Issue 2 2005CATHERINE CRÔNIER The best insight into the development of Devonian phacopids has been obtained from Trimerocephalus lelievrei Crônier & Feist, 1997, a Famennian phacopine from Morocco, where changes in size and shape have been quantified. In this study, a morphometric approach has been used: (1) to retrodeform and then establish patterns of morphological variation in a well preserved but tectonically deformed assemblage belonging to another phacopine species Weyerites ensae (Richter & Richter, 1926), a Famennian phacopine from Thuringia, and (2) to establish patterns of developmental and evolutionary changes within two closely related species: Weyerites ensae and Trimerocephalus lelievrei. The method of retrodeformation using a set of discrete points presumed to be homologous on all studied individuals, has demonstrated that the next analyses are possible on the retrodeformed material as compared to the undeformed material. Morphometric analysis based on outline analysis has permitted demonstration of progressive shape change in agreement with ontogenetic ordination and a comparison of changes in size and shape in Weyerites ensae. The main changes in shape appear to occur in the meraspid period, whereas increase in size takes place mainly in the holaspid period. This pattern, already reported for Trimerocephalus lelievrei, can be generalized for phacopine trilobites from the Late Devonian. Moreover, the comparison of the two ontogenetic trajectories has shown that most of the differences are related to ,structural' changes, probably linked to a relative pre- post-displacement. The results suggest that ecological adaptation may be studied by examining the changes in development that occur within species through time and space. [source] The divergence of two independent lineages of an endemic Chinese gecko, Gekko swinhonis, launched by the Qinling orogenic beltMOLECULAR ECOLOGY, Issue 12 2010JIE YAN Abstract The genetic structure and demographic history of an endemic Chinese gecko, Gekko swinhonis, were investigated by analysing the mitochondrial cytochrome b gene and 10 microsatellite loci for samples collected from 27 localities. Mitochondrial DNA data provided a detailed distribution of two highly divergent evolutionary lineages, between which the average pairwise distance achieved was 0.14. The geographic division of the two lineages coincided with a plate boundary consisting of the Qinling and Taihang Mts, suggesting a historical vicariant pattern. The orogeny of the Qinling Mts, a dispersal and major climatic barrier of the region, may have launched the independent lineage divergence. Both lineages have experienced recent expansion, and the current sympatric localities comprised the region of contact between the lineages. Individual-based phylogenetic analyses of nucDNA and Bayesian-clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level at localities outside of the contact region can be explained by the different inheritance patterns and male-biased dispersal in this species. High genetic divergence, long-term isolation and ecological adaptation, as well as the morphological differences, suggest the presence of a cryptic species. [source] Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae)NEW PHYTOLOGIST, Issue 3 2006Erika J. Edwards Summary ,,Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. ,,This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. ,,There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits , mid-day leaf water potentials and photosynthetic water use efficiency , correlated with estimates of moisture regime. ,,In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation. [source] Clonal genetic diversity and populational genetic differentiation in Phragmites australis distributed in the Songnen Prairie in northeast China as revealed by amplified fragment length polymorphism and sequence-specific amplification polymorphism molecular markersANNALS OF APPLIED BIOLOGY, Issue 1 2009M. Li Abstract Genetic variation within and between four naturally occurring Phragmites australis land populations, DBS, QG, SS1 and SS2 (named after locality), which colonise distinct habitats (different edaphic conditions) in the Songnen Prairie in northeast China, were investigated by amplified fragment length polymorphism (AFLP) and sequence-specific amplification polymorphism (S-SAP) markers. It was found that the selected primer combinations of both markers were highly efficient in revealing the inter-clonal genetic diversity and inter-populational genetic differentiation in P. australis from a molecular ecological perspective. Cluster analysis categorised the plants into distinct groups (DBS, QG and SS groups), which were in line with their localities, albeit the two SS group populations (SS1 and SS2) showed a lower degree of inter-populational differentiation. These results were strongly supported by multiple statistical analysis including Mantel's test, principal coordinate analysis, allocation test and analysis of molecular variance, which further suggested that gene flow, genetic drift and differences in as yet unidentified edaphic factors may all underpin the inter-clonal genetic diversity and inter-populational differentiation at the nucleotide sequence level. Analysis of intra-population clonal diversity also revealed that the QG population harboured a strikingly lower amount of within-population variation compared with those of the other three populations, presumably being caused by genetic drift and followed by physical and/or biological isolation. Homology analysis of a subset of population-specific or population-private AFLP and S-SAP bands suggested that regulatory genes and retroelements might play important roles in the ecological adaptation and differentiation of the P. australis populations. Possible causes for and implications of the extensive genetic variability in P. australis were discussed for its future genetic conservation and use in ecological revegetation. [source] Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, CameroonMOLECULAR ECOLOGY, Issue 6 2001Ulrich Schliewen Abstract Although there is mounting evidence that speciation can occur under sympatric conditions, unambiguous examples from nature are rare and it is almost always possible to propose alternative allopatric or parapatric scenarios. To identify an unequivocal case of sympatric speciation it is, therefore, necessary to analyse natural settings where recent monophyletic species flocks have evolved within a small and confined spatial range. We have studied such a case with a cichlid species flock that comprises five Tilapia forms endemic to a tiny lake (Lake Ejagham with a surface area of approximately 0.49 km2) in Western Cameroon. Analysis of mitochondrial D-Loop sequences shows that the flock is very young (approximately 104 years) and has originated from an adjacent riverine founder population. We have focused our study on a particular pair of forms within the lake that currently appears to be in the process of speciation. This pair is characterized by an unique breeding colouration and specific morphological aspects, which can serve as synapomorphic characters to prove monophyly. It has differentiated into a large inshore and a small pelagic form, apparently as a response to differential utilization of food resources. Still, breeding and brood care occurs in overlapping areas, both in time and space. Analysis of nuclear gene flow on the basis of microsatellite polymorphisms shows a highly restricted gene flow between the forms, suggesting reproductive isolation between them. This reproductive isolation is apparently achieved by size assortative mating, although occasional mixed pairs can be observed. Our findings are congruent with recent theoretical models for sympatric speciation, which show that differential ecological adaptations in combination with assortative mating could easily lead to speciation in sympatry. [source] |