Eclogite Facies Metamorphism (eclogite + facy_metamorphism)

Distribution by Scientific Domains


Selected Abstracts


Prograde eclogites from the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt, central Shikoku, southwest Japan

ISLAND ARC, Issue 3 2005
Yasuo Miyagi
Abstract Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P/low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P,T conditions are T = 300,450°C and P = 0.7,1.1 GPa for the epidote-blueschist facies, and the peak P,T conditions for the eclogite facies are T = 700,730°C and P , 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase,biotite zone were reached. The high- P/low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep dP/dT geothermal gradients despite their diverse peak P,T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep dP/dT geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation. [source]


Structural position of the Seba eclogite unit in the Sambagawa Belt: Supporting evidence for an eclogite nappe

ISLAND ARC, Issue 2 2002
Article first published online: 4 JUL 200, Mutsuki Aoya
Abstract Eclogite-bearing units in the Sambagawa Metamorphic Belt have long been considered tectonic blocks that have disparate tectonic and metamorphic histories that are distinct from each other and from the major non-eclogitic Sambagawa schists. However, recent studies have shown that eclogite facies metamorphism of the Seba eclogite unit is related to the subduction event that caused the metamorphism of the non-eclogitic Sambagawa schist. New structural data further show that the Seba eclogite unit, which appears to be isolated from the other eclogite units, is in fact in structural continuity with them, occupying the highest structural levels in the Sambagawa Belt. This suggests that eclogitic metamorphism of the other eclogite units is also related to the Sambagawa subduction event. It is, therefore, possible that all eclogite units in the Sambagawa Belt constitute a single coherent unit, the eclogite nappe, members of which underwent the same eclogitic metamorphism related to the Sambagawa subduction event. [source]


Age and early metamorphic history of the Sanbagawa belt: Lu,Hf and P,T constraints from the Western Iratsu eclogite

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2009
S. ENDO
Abstract Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c. 120,110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c. 88,89 Ma based on a garnet,omphacite Lu,Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units,all ,20 kbar and 600,650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu,Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote,amphibolite facies parageneses equilibrated at 550,650 °C and ,10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu,Hf age of c. 116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap (c. 27 Myr) between the two Lu,Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone. [source]


Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007
J. A. BALDWIN
Abstract A re-evaluation of the P,T history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet,clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ,16 kbar and 750 °C, followed by near-isothermal decompression to ,10 kbar. Associated with the eclogite are two types of occurrences of sapphirine-bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1,2 m zone adjacent to the eclogite body with a peak assemblage of garnet,kyanite,quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine,plagioclase and spinel,plagioclase symplectites developed around kyanite. The second variety of sapphirine-bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine,plagioclase, spinel,plagioclase and corundum,plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ,7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid-crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5,10 Myr, indicating that ,25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ,2,5 mm year,1 following eclogite facies metamorphism, after which the rocks resided at mid-crustal levels for 80,100 Myr. [source]


Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2007
Y.-C. LIU
Abstract Although ultrahigh-pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east-central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high-pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle-derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two-fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition. [source]


Late Miocene,Pliocene eclogite facies metamorphism, D'Entrecasteaux Islands, SE Papua New Guinea

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007
B. D. MONTELEONE
Abstract The D'Entrecasteaux Islands of south-eastern Papua New Guinea are active metamorphic core complexes that formed within a region where the plate tectonic regime has transitioned from subduction to rifting. While rapid, post 4 Myr exhumation and cooling of amphibolite and greenschist facies rocks that constitute the footwall of the crustal scale detachment fault system have been previously documented on Fergusson and Goodenough Islands of the D'Entrecasteaux chain, the timing of eclogite facies metamorphism in rocks of the footwall was unknown. Recent work revealed that at least one of the eclogite bodies formed during the Pliocene. We present combined in situ ion microprobe U,Pb age analyses of zircon from five variably retrogressed eclogite samples from Fergusson and Goodenough Islands that document Late Miocene,Pliocene (8,2 Ma) eclogite formation on these islands. Textural relationships and zircon,garnet rare earth element partition coefficients indicate that U,Pb ages constrain zircon crystallization under eclogite facies conditions in all samples. Results suggest westward younging of eclogite facies metamorphism from Fergusson to Goodenough Island. Present-day exposure of Late Miocene,Pliocene eclogites requires exhumation rates > 2.5 cm yr,1. [source]


SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006
F. L. LIU
Abstract Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu-Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh-pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark-luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white-luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542,693 °C and 1.8,2.1 GPa. In contrast, the UHP metamorphic domains are grey-luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739,866 °C and >5.5 GPa. The outermost retrograde rims have dark-luminescent CL images, and contain low- P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP-MS trace-element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U-Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823,503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254,239 Ma, the UHP growth domains occurred at 238,230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218,206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55,60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165,175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid-crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P,T conditions are 9,10 km Myr,1 and 6.4 km Myr,1, respectively, and these rapid subduction,exhumation rates may explain the obtained P,T,t path. Such a fast exhumation suggests that Sulu-Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth. [source]


Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic)

JOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2004
típská
Abstract The exhumation of eclogite facies granulites (Omp,Plg,Grt,Qtz,Rt) in the Rychleby Mts, eastern Czech Republic, was a localised process initiated by buckling of crustal layers in a thickened orogenic root. Folding and post-buckle flattening was followed by the main stage of exhumation that is characterized by vertical ductile extrusion. This process is documented by structural data, and the vertical ascent of rocks from a depth of c. 70 to c. 35 km is documented by metamorphic petrology. SHRIMP 206Pb/238U and 207Pb/206Pb evaporation zircon ages of 342 ± 5 and 341.4 ± 0.7 Ma date peak metamorphic conditions. The next stage of exhumation was associated with sideways flat thrusting associated with lateral viscous spreading of granulites and surrounding rocks over indenting adjacent continental crust at a depth of c. 35,30 km. This stage was associated with syntectonic intrusion of a granodiorite sill at 345,339 Ma, emplaced at a crustal depth of c. 25 km. The time required for cooling of the sill as well as for heating of the country rocks brackets this event to a maximum of 250 000 years. Therefore, similar ages of crystallization for the granodiorite magma and the peak of eclogite facies metamorphism of the granulite suggest a very short period of exhumation, limited by the analytical errors of the dating methods. Our calculations suggest that the initial exhumation rate during vertical extrusion was 3,15 mm yr,1, followed by an exhumation rate of 24,40 mm yr,1 during further uplift along a magma-lubricated shear zone. The extrusion stage of exhumation was associated with a high cooling rate, which decreased during the stage of lateral spreading. [source]


Discovery of eclogite facies carbonate rocks from the Lindås Nappe, Caledonides, Western Norway

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2002
T. M. Boundy
Abstract Eclogite facies carbonate rocks have been discovered associated with the granulite,eclogite transitional rocks within Bergen Arc system, Caledonian Orogen of western Norway. The local occurrences of marbles and calc-silicates are found subparallel to the mafic eclogite facies shear zones on Holsnøy Island. Marbles contain the assemblage calcite (Ca0.99Sr0.01CO3), calcian strontianite (Ca0.18,0.44Sr0.53,0.84CO3), clinopyroxene (Jd7,32), epidote/allanite (Ps0,33), titanite, garnet (Alm52,56Grs28,33Pyp11,16), barite (Ba0.90,0.99Sr0.01,0.10SO4), celestine (Sr0.67,0.98Ba0.01,0.23Ca0.01,0.11SO4), and one apparently homogeneous grain of intermediate composition (Ba0.49Ca0.01Sr0.50SO4). Adjacent eclogites have clinopyroxene with similar jadeite contents (Jd14,34) and similar garnet (Alm51,60Grs26,36Pyp8,14) compositions. The marbles have high contents of Sr (9500,11000 p.p.m) and Y (115,130 p.p.m). However, low concentrations of some key trace elements (110,160 p.p.m. Ba and <5 p.p.m. Nb) appear to indicate that the marble is not a metamorphosed carbonatite. The 87Sr/86Sr ratios range from 0.7051 to 0.7059. Field and petrological relationships suggest that metasomatic reactions and fluids played a significant role in producing and/or modifying the marbles. The breakdown of scapolite in the granulite into carbonates and sulphates during eclogite facies metamorphism may have contributed to the metasomatic formation of the marbles along shear zones. Fluids involved during subduction are an important catalyst for metamorphism and are recognized to have played a critical role in the localized transformation from granulite to eclogite in the Holsnøy Island area. Thermobarometry indicates 640,690 °C and 18,20 kbar for adjacent eclogites and temperatures of 580,650 °C for the calc-silicates. The marble assemblages are consistent with fluid that is dominantly comprised of H2O (XCO2 < 0.03) under high-pressure conditions. Phase equilibria of the marbles constrain the fO2 of the fluids and imply oxidizing conditions of the deep crustal fluids. At present the source of the fluids remains unresolved. The results provide additional insights into the variable and evolving nature of fluids related to subduction and high-pressure metamorphism. [source]


Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001
Y. L. Xiao
Abstract A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well-preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P,T path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2 -bearing NaCl-rich solutions, whereas it changed into CO2 -dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low-salinity fluids were involved. In situ UV-laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (,18OVSMOW = c. 6.7,) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid,rock interactions. Unusual MORB-like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra-high-pressure (UHP) eclogites in the Dabie-Sulu area. However, the age-corrected initial ,Nd(t) is ,,2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. [source]