Eastern Slope (eastern + slope)

Distribution by Scientific Domains


Selected Abstracts


Dry spots and wet spots in the Andean hotspot

JOURNAL OF BIOGEOGRAPHY, Issue 8 2007
Timothy J. Killeen
Abstract Aim, To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location, Eastern slope of the tropical Andes, South America. Methods, We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results, We identify spatially separate super-humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low-level jet (SALLJ), a relatively steady wind gyre that flows pole-ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ,elbow of the Andes' at 18° S. Super-humid regions with mean annual precipitation greater than 3500 mm, are associated with a ,favourable' combination of topography, wind-flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ,unfavourable' topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite-estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super-humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super-humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions, The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super-humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics. [source]


Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties

HYDROLOGICAL PROCESSES, Issue 7 2005
Katrin Fleischbein
Abstract Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900,2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = ,0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Dry spots and wet spots in the Andean hotspot

JOURNAL OF BIOGEOGRAPHY, Issue 8 2007
Timothy J. Killeen
Abstract Aim, To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location, Eastern slope of the tropical Andes, South America. Methods, We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results, We identify spatially separate super-humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low-level jet (SALLJ), a relatively steady wind gyre that flows pole-ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ,elbow of the Andes' at 18° S. Super-humid regions with mean annual precipitation greater than 3500 mm, are associated with a ,favourable' combination of topography, wind-flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ,unfavourable' topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite-estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super-humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super-humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions, The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super-humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics. [source]


Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides

JOURNAL OF BIOGEOGRAPHY, Issue 2 2000
A. C. Premoli
Abstract Aim Palaeoenvironmental records of Pleistocene glaciation and associated vegetation changes in Patagonia have led to the hypothesis that during the last glacial maximum (LGM) tree species survived locally in favourable habitats. If present populations originated from spread from only one refugium, such as an ice-free area of coastal Chile (Single Refugium hypothesis), we would expect that eastern populations would be genetically depauperate and highly similar to western populations. In contrast, if the ice cap was not complete and tree species persisted in forest patches on both slopes of the Andes (Multiple Refugia hypothesis), we would expect a greater degree of genetic divergence between populations either on opposite sides of the Cordillera (Cordillera Effect scenario) or towards its present-day southern distributional limit where the ice sheet reached its maximum coverage (Extent-of-the-Ice scenario). Location We tested this refugia hypothesis using patterns of isozyme variation in populations sampled over the entire modern range of the endemic conifer Fitzroya cupressoides (Mol.) Johnst. (Cupressaceae) in temperate South America. Methods Fresh foliage was collected from twenty-four populations and analysed by horizontal electrophoresis on starch gels. Results Twenty-one putative loci were reliably scored and 52% were polymorphic in at least one population. Populations from the eastern slope of the Andes were genetically more variable than those from the western slope; the former had a greater mean number of alleles per locus, a larger total number of alleles and rare alleles, and higher polymorphism. Genetic identities within western populations were greater than within eastern populations. Discriminant analyses using allelic frequencies of different grouping schedules of populations were non significant when testing for the Single Refugium hypothesis whereas significant results were obtained for the Multiple Refugia hypothesis. Main conclusions Our results indicate that present Fitzroya populations are the result of spreading from at least two, but possibly more, glacial refugia located in Coastal Chile and on the southern flanks of the Andes in Argentina. [source]


Morphologic variability of exposed mass-transport deposits on the eastern slope of Gela Basin (Sicily channel)

BASIN RESEARCH, Issue 2 2007
Daniel Minisini
ABSTRACT The NE portion of Gela Basin in the Sicily Channel is affected by multiple slope failures originated during the late-Quaternary. Basin sequences show evidence of stacked acoustically transparent and/or chaotic units, characterized by irregular upper surfaces, interpreted as mass-transport deposits. The seafloor morphology also shows evidence of both old, partially buried, as well as recent slide products. Two recent slides exposed at seafloor, only 6 km apart (Twin Slides), are similar in geomorphological parameters, age and multistage evolution. Multistage failure of Twin Slides evolved from mud flows, derived from the extensive failure of less consolidated post-glacial units, to localized slides (second stage of failure) affecting older and more consolidated materials. Although Twin Slides are very close to each other and have similar runout and fall height, they produced very dissimilar organization of the displaced masses, likely reflecting the distinct source units affected by failures. Integrating geophysical, sedimentological, structural and palaeontological data, a detailed investigation was conducted to determine the size and internal geometry of this mass-transport complex, to explain the differentiated product and to shed light on its predisposing factors, triggers and timing. [source]


GLACIATION OF MT ALLEN, STEWART ISLAND (RAKIURA): THE SOUTHERN MARGIN OF LGM GLACIATION IN NEW ZEALAND

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2009
MARTIN S. BROOK
ABSTRACT. The origin of two ridges on the eastern slopes of Mt Allen, southern Stewart Island, has remained equivocal, with differences of opinion over the exact process-mechanisms of formation. A variety of approaches was used to test a number of possible hypotheses about the origin of the ridges. These include topographic and spatial positioning, geomorphology, sedimentology and palaeoclimatological extrapolations to reconstruct two small former cirque glaciers with equilibrium line altitudes (ELAs) of c. 600 m. It would appear the two ridges reflect a glacial origin, the glaciers interpreted as forming during the Last Glacial Maximum (LGM) in New Zealand. Whilst glaciation during this time (18,19 ka) was extensive in the Southern Alps, the restricted nature of glaciation on Mt Allen suggests the low altitude restricted glaciation to niche sites on the lee side of upland areas. [source]


Dry spots and wet spots in the Andean hotspot

JOURNAL OF BIOGEOGRAPHY, Issue 8 2007
Timothy J. Killeen
Abstract Aim, To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location, Eastern slope of the tropical Andes, South America. Methods, We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results, We identify spatially separate super-humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low-level jet (SALLJ), a relatively steady wind gyre that flows pole-ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ,elbow of the Andes' at 18° S. Super-humid regions with mean annual precipitation greater than 3500 mm, are associated with a ,favourable' combination of topography, wind-flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ,unfavourable' topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite-estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super-humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super-humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions, The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super-humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics. [source]


Late-glacial and Holocene palaeovegetation zonal reconstruction for central and north-central North America

JOURNAL OF BIOGEOGRAPHY, Issue 6 2005
W. L Strong
Abstract Aim, The purpose of this study is to develop palaeovegetation zonation models for central and north-central North America, based on late-Quaternary and Holocene pollen stratigraphic data (n = 246 sites). A secondary purpose was to evaluate an hypothesis (Strong & Hills, 2003) to explain the disjunct distribution of species in western Alberta. Location, Hudson Bay-Lake Michigan to the Rocky Mountains region, north of 36° N to the Arctic Ocean (c. 70° N). Methods, Pollen profiles spanning 40 years of palaeoecological research in North America were extracted from published and unpublished archival sources. Individual profiles were subdivided into 1000-year increments based on the assumption of a constant sedimentation rate between stratigraphic dates (e.g. surface sediments, radiocarbon 14C dates, tephra layers). The pollen composition among profiles was standardized to 54 commonly recognized taxa, with percentage composition within each stratigraphic sample prorated to 100% prior to analysis. Near-surface sediments from these profiles were included as analogues of modern vegetation. Cluster analysis was used as a guide to the classification of 2356 temporal stratigraphic samples, which resulted in the recognition of 16 pollen groups. These groups were summarized in terms of their pollen composition, mapped, and used in combination with terrain information and an ecological knowledge of the study area to construct six physiognomically-based palaeovegetation zonation models at 2000-year intervals from 14,000 to 4000 yr bp (radiocarbon years before present). Results, The 14,000 yr bp model placed Boreal and Cordilleran Forests proximal to the southern glacial front, whereas Arctic tundra dominated the Yukon Territory,Alaska ice-free zone. Pollen and macrofossil evidence suggests that this Boreal Forest zone contained a mixture of coniferous and deciduous tree species. Grassland was postulated immediately south of the forest zone, with its northern extreme near 49° N latitude in the Alberta,Montana border area. Separation of the Laurentide and Cordilleran glacial fronts about 12,000 yr bp initiated the northward advance of Boreal Forests into western Canada. By the end of the Hypsithermal at about 6000 yr bp, Boreal Forests occurred near the Arctic Ocean, and Grassland and Aspen Parkland zones may have extended to 54° N and 59° N latitude in Alberta, respectively. Between 6000 and 4000 yr bp, a 5° and 1° latitudinal southward shift of the northern Boreal Forest and Grassland/Aspen Parkland boundaries occurred, respectively, near their contemporary positions with corresponding expansions of the Subarctic and Arctic zones. Modern Canadian Cordilleran Forests along the eastern slopes of the Rocky Mountains were interpreted as originating from the north-central Montana,south-western Alberta area. Jack pine (Pinus banksiana Lamb.), a common Boreal Forest species, appears to have entered central Canada via the north side of Lake Superior after 11,000 yr bp. Main conclusions, Modern vegetation in central Canada evolved from biomes located in the northern USA during the late-Quaternary. The Boreal Forest biome contained the same arboreal taxa as the modern vegetation, except it lacked jack pine. The proposed regional palaeovegetation models support the hypothesis of Strong & Hills (2003), but new independent palaeoecological data will be needed for a proper evaluation. [source]


Post-Hypsithermal plant disjunctions in western Alberta, Canada

JOURNAL OF BIOGEOGRAPHY, Issue 3 2003
W. L Strong
Abstract Aim, Evaluate the hypothesis that nine disjunct vascular plant species along the eastern slopes of the Rocky Mountains and in the Peace River District of west-central Alberta represent remnants of more southerly vegetation that occupied these areas during the Holocene Hypsithermal (9000,6000 yr bp). Alternatively, these plants represent populations that became established because of independent chance dispersal events. Location, This study focuses on the area east of the Rocky Mountain Continental Divide in the Province of Alberta and the State of Montana in western Canada and USA, respectively. Methods, Disjunct species were identified and their distributions mapped based on a review of occurrence maps and records, botanical floras and checklists, herbaria specimens, ecological and botanical studies, and field surveys of selected species. A disjunct species was defined as a plant population separated from its next nearest occurrence by a distance of > 300 km. Evaluation of the hypothesis was based on a review of published and unpublished pollen stratigraphy and palaeoecological studies. The potential geographical distribution of Hypsithermal vegetation was based on modern regional-based ecosystem mapping and associated monthly temperature summaries as well as future climatic warming models. Results, The hypothesis was compatible with Holocene pollen stratigraphy, Hypsithermal permafrost and fen occurrence, and palaeosol phytolith analyses; and future global climatic warming models. Modelled regional Hypsithermal vegetation based on a 1 °C increase in July temperatures relative to current conditions, indicated that much of the boreal forest zone in Alberta could have been grassland, which would explain the occurrence of Prairie species in the Peace River District. This amount of latitudinal vegetation shift (6.5°) was similar to an earlier Hypsithermal permafrost zone location study. An equivalent shift in vegetation along the eastern Cordillera would have placed south-western Montana-like vegetation and species such as Boykinia heucheriformis (Rydb.) Rosend. and Saxifraga odontoloma Piper within the northern half of the Rocky Mountains and foothills in Alberta, which represents the location of modern-day disjunct populations of these species. Main conclusions, Warmer and drier climatic conditions during the Holocene Hypsithermal resulted in the northward displacement of vegetation zones relative to their current distribution patterns. Most of Alberta was probably dominated by grasslands during this period, except the Rocky Mountains and northern highlands. Modern-day species disjunctions within the Rocky Mountains and Peace River District as well as more northerly areas such as the Yukon Territory occurred when the vegetation receded southward in response to climatic cooling after the Hypsithermal. Wind dispersal was considered an unlikely possibility to explain the occurrence of the disjunct species, as most of the plants lack morphological adaptations for long distance transport and the prevailing winds were from west to east rather than south to north. However, consumption and transport of seeds by northward migrating birds could not be excluded as a possibility. [source]