East Antarctica (east + antarctica)

Distribution by Scientific Domains


Selected Abstracts


Spatial utilisation of fast-ice by Weddell seals Leptonychotes weddelli during winter

ECOGRAPHY, Issue 3 2005
Samantha Lake
This study describes the distribution of Weddell seals Leptonychotes weddelli in winter (May,September 1999) at the Vestfold Hills, in Prydz Bay, East Antarctica. Specifically, we describe the spatial extent of haul-out sites in shore,fast sea-ice, commonly referred to as fast-ice. As winter progressed, and the fast-ice grew thick (ca 2 m), most of the inshore holes closed over, and the seals' distribution became restricted to ocean areas beyond land and islands. Using observations from the end of winter only, we fitted Generalised Additive Models (GAMs) to generate resource selection functions, which are models that yield values proportional to the probability of use. The models showed that seal distribution was defined mainly by distance to ice-edge and distance to land. Distance to ice-bergs was also selected for models of some regions. We present the results as maps of the fitted probability of seal presence, predicted by the binomial GAM for offshore regions, both with and without autocorrelation terms. The maps illustrate the expected distribution encompassing most of the observed distribution. On this basis, we hypothesise that propensity for the fast-ice to crack is the major determinant of Weddell seal distribution in winter. Proximity to open water and pack-ice habitats could also influence the distribution of haul-out sites in fast-ice areas. This is the first quantitative study of Weddell seal distribution in winter. Potential for regional variation is discussed. [source]


Reconstruction of the Ross Ice Drainage System, Antarctica, at the Last Glacial Maximum

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2-3 2000
George H. Denton
We present here a revised reconstruction of the Ross ice drainage system of Antarctica at the last glacial maximum (LGM) based on a recent convergence of terrestrial and marine data. The Ross drainage system includes all ice flowlines that enter the marine Ross Embayment. Today, it encompasses one-fourth of the ice-sheet surface, extending far inland into both East and West Antarctica. Grounding lines now situated in the inner Ross Embayment advanced seaward at the LGM (radiocarbon chronology in Denton and Marchant 2000 and in Hall and Denton 2000a, b), resulting in a thick grounded ice sheet across the Ross continental shelf. In response to this grounding in the Ross (and Weddell) Embayment, ice-surface elevations of the marine-based West Antarctic Ice Sheet were somewhat higher at the LGM than at present (Steig and White 1997; Borns et al. 1998; Ackert et al. 1999). At the same time, surface elevations of the East Antarctic Ice Sheet inland of the Transantarctic Mountains were slightly lower than now, except near outlet glaciers that were dammed by grounded ice in the Ross Embayment. The probable reason for this contrasting behavior is that lowered global sea level at the LGM, from growth of Northern Hemisphere ice sheets, caused widespread grounding of the marine portion of the Antarctic Ice Sheet, whereas decreased LGM accumulation led to slight surface lowering of the interior terrestrial ice sheet in East Antarctica. Rising sea level after the LGM tripped grounding-line recession in the Ross Embayment, which has probably continued to the present day (Conway et al. 1999). Hence, gravitational collapse of the grounded ice sheet from the Ross Embayment, accompanied by lowering of the interior West Antarctic ice surface and of outlet glaciers in the Transantarctic Mountains, occurred largely during the Holocene. At the same time, increased Holocene accumulation caused a slight rise of the inland East Antarctic ice surface. [source]


Evidence for a lacustrine faunal refuge in the Larsemann Hills, East Antarctica, during the Last Glacial Maximum

JOURNAL OF BIOGEOGRAPHY, Issue 7 2006
Louise Cromer
Abstract Aim, There is no previous direct evidence for the occurrence of lacustrine refuges for invertebrate fauna in Antarctica spanning the Last Glacial Maximum (LGM). In the absence of verified LGM lacustrine refuges many species are believed to result from Holocene dispersal from sub-Antarctic islands and continents further north. If freshwater lake environments were present throughout the LGM, extant freshwater species may have been associated with Antarctica prior to this glacial period. This study looked at faunal microfossils in a sediment core from an Antarctic freshwater lake. This lake is unusual in that, unlike most Antarctic lakes, the sediment record extends to c. 130,000 yr bp, i.e. prior to the LGM. Location, Lake Reid, Larsemann Hills, East Antarctica (76°23, E; 69°23, S). Methods, Palaeofaunal communities in Lake Reid were identified through examination of faunal microfossils in a sediment core that extended to c. 130,000 yr bp. Results, Ephippia and mandibles from the cladoceran Daphniopsis studeri and loricae of the rotifer Notholca sp. were found at all depths in the sediment, indicating that these two species have been present in the lake for up to 130,000 years. Copepod mandibles were also present in the older section of the core, yet were absent from the most recent sediments, indicating extinction of this species from Lake Reid during the LGM. Main conclusion, The presence of D. studeri and Notholca sp. microfossils throughout the entire Lake Reid core is the first direct evidence of a glacial lacustrine refugium for invertebrate animals in Antarctica, and indicates the presence of a relict fauna on the Antarctic continent. [source]


On the roles of deformation and fluid during rejuvenation of a polymetamorphic terrane: inferences on the geodynamic evolution of the Ruker Province, East Antarctica

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2007
G. PHILLIPS
Abstract Evaluating pressure,temperature (P,T) conditions through mineral equilibria modelling within an amphibolite facies polymetamorphic terrane requires knowledge of the fluid content of the rocks. The Archean-Palaeoproterozoic basement rocks of the Ruker Province, East Antarctica, preserve evidence of three metamorphic events (M1,M3). Of particular interest is the M3 event, which is constrained to the early Palaeozoic (c. 550,480 Ma). Evaluation of the tectonic setting during this time is important because the Ruker Province is located within a critical region with respect to models of Gondwana assembly. Structural evidence of the early Palaeozoic event is preserved as large (up to ,500 m wide) high strain zones that cut the orthogneiss-metasedimentary basement (Tingey Complex) of the Ruker Province. Rocks within these zones have been thoroughly recrystallized and preserve a dominant shear fabric and M3 mineral assemblages that formed at P,T conditions of 4.0,5.2 kbar and 565,640 °C. Distal to these zones, rocks preserve more complex petrographic relationships with S1 and S2 foliations, being incompletely overgrown by M3 retrograde assemblages. We show that the mineral assemblages preserved during the M3 event are highly dependent on the availability of fluid H2O, which is strongly influenced by the structural setting (i.e. proximity to the high-strain zones). P,T structural and fluid flow constraints support a model of basin inversion during early Palaeozoic crustal rejuvenation in the Ruker Province. [source]


Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica)

JOURNAL OF QUATERNARY SCIENCE, Issue 4 2004
Elie Verleyen
Abstract The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice-covered between 30,000,yr,BP and 13,500,cal.,yr,BP. From 13,500,cal.,yr,BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13,500 and 11,500,cal.,yr,BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11,500 to 9500,cal.,yr,BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400,cal.,yr,BP dry and cold conditions are inferred from high lake-water salinities, and low water levels and an extended duration of nearshore sea-ice. A second climate optimum occurred between 7400 and 5230,cal.,yr,BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750,cal.,yr,BP sea-ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea-ice extent is evident between 2750 and 2200,cal.,yr,BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000,cal.,yr,BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140,cal.,yr,BP. These data are consistent with ice-core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long-term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Minimum Bedrock Exposure Ages and Their Implications: Larsemann Hills and Neighboring Bolingen Islands, East Antarctica

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010
Feixin HUANG
Abstract: Considerable controversy exists over whether or not extensive glaciation occurred during the global Last Glacial Maximum (LGM) in the Larsemann Hills. In this study we use the in situ produced cosmogenic nuclide 10Be (half life 1.51 Ma) to provide minimum exposure ages for six bedrock samples and one erratic boulder in order to determine the last period of deglaciation in the Larsemann Hills and on the neighboring Bolingen Islands. Three bedrock samples taken from Friendship Mountain (the highest peak on the Mirror Peninsula, Larsemann Hills; ,2 km from the ice sheet) have minimum exposure ages ranging from 40.0 to 44.7 ka. The erratic boulder from Peak 106 (just at the edge of the ice sheet) has a younger minimum exposure age of only 8.8 ka. The minimum exposure ages for two bedrock samples from Blundell Peak (the highest peak on Stornes Peninsula, Larsemann Hills; ,2 km from the ice sheet) are about 17 and 18 ka. On the Bolingen Islands (southwest to the Larsemann Hills; ,10 km from the ice sheet), the minimum exposure age for one bedrock sample is similar to that at Friendship Mountain (i.e., 44 ka). Our results indicate that the bedrock exposure in the Larsemann Hills and on the neighboring Bolingen Islands commenced obviously before the global LGM (i.e., 20,22 ka), and the bedrock erosion rates at the Antarctic coast areas may be obviously higher than in the interior land. [source]


Cenozoic Exhumation of Larsemann Hills, East Antarctica: Evidence from Apatite Fission-track Thermochronology

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010
Xuanhua CHEN
Abstract: Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reveals a Cenozoic exhumation event at 49.8 ± 12 Ma, which we interpret to be a result of exhumation caused by crustal extension. Within the uncertainty of our age determination, the timing of extension in East Antarctica determined by our study is coeval with the onset time of rifting in West Antarctica at c.55 Ma. The apatite fission-track cooling ages vary systematically in space, indicating a coherent block rotation of the Larsemann Hills region from c.50 Ma to c.10 Ma. This pattern of block tilting was locally disrupted by normal faulting along the Larsemann Hills detachment fault at c.5.4 Ma. The regional extension in the Larsemann Hills, East Antarctica was the result of tectonic evolution in this area, and may be related to the global extension. Through the discussion of Pan-Gondwanaland movement, and Mesozoic and Cenozoic extensions in West and East Antarctica and adjacent areas, we suggest that the protracted Cenozoic cooling over the Larsemann Hills area was caused by extensional tectonics related to separation and formation of the India Ocean at the time of Gondwanaland breakup. [source]


Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia

BASIN RESEARCH, Issue 3 2007
D. W. Maidment
ABSTRACT Detrital zircon geochronology of Neoproterozoic to Devonian sedimentary rocks from the Georgina and Amadeus basins has been used to track changes in provenance that reflect the development and inversion of the former Australian Superbasin. Through much of the Neoproterozoic, sediments appear to have been predominantly derived from local sources in the Arunta and Musgrave inliers. Close similarities between the detrital age signatures of late Neoproterozoic sedimentary rocks in the two basins suggests that they were contiguous at this time. A dominant population of 1.2,1.0 Ga zircon in Early Cambrian sediments of the Amadeus Basin reflects the uplift of the Musgrave Inlier during the Petermann Orogeny between 560 and 520 Ma, which shed a large volume of detritus northwards into the Amadeus Basin. Early Cambrian sedimentary rocks in the Georgina Basin have a much smaller proportion of 1.2,1.0 Ga detritus, possibly due to the formation of sub-basins along the northern margin of the Amadeus Basin which might have acted as a barrier to sediment transfer. An influx of 0.6,0.5 Ga zircon towards the end of the Cambrian coincides with the transgression of the Larapintine Sea across central Australia, possibly as a result of intracratonic rifting. Detrital zircon age spectra of sedimentary rocks deposited within this epicontinental sea are very similar to those of coeval sedimentary rocks from the Pacific Gondwana margin, implying that sediment was transported into central Australia from the eastern continental margin. The remarkably consistent ,Pacific Gondwana' signature of Cambro-Ordovician sediments in central and eastern Australia reflects a distal source, possibly from east Antarctica or the East African Orogen. The peak of the marine incursion into central Australia in the early to mid Ordovician coincides with granulite-facies metamorphism at mid-crustal depths between the Amadeus and Georgina basins (the Larapinta Event). The presence of the epicontinental sea, the relative lack of a local basement zircon component in Cambro-Ordovician sedimentary rocks and their maturity suggest that metamorphism was not accompanied by mountain building, consistent with an extensional or transtensional setting for this tectonism. Sediments deposited at ,435,405 and ,365 Ma during the Alice Springs Orogeny have detrital age signatures similar to those of Cambro-Ordovician sedimentary rocks, reflecting uplift and reworking of the older succession into narrow foreland basins adjacent to the orogen. [source]