Home About us Contact | |||
Early Triassic (early + triassic)
Selected AbstractsGUODUNITES, A LOW-PALAEOLATITUDE AND TRANS-PANTHALASSIC SMITHIAN (EARLY TRIASSIC) AMMONOID GENUSPALAEONTOLOGY, Issue 2 2009ARNAUD BRAYARD Abstract:, Based on new, bed-rock controlled material from Oman and Utah, USA, the Early Triassic genus Guodunites, which was recently erected on the basis of scarce specimens from northwestern Guangxi, South China, is now shown to be a representative of Proptychitidae. This solves the question of the previously unknown phylogenetic affinity of this genus. The genus is restricted to the late middle Smithian, and to date, its biogeographical distribution comprises Oman, South China and Utah, thus indicating an essentially low palaeolatitudinal distribution during the Early Triassic. Its palaeobiogeographical distribution further strengthens the existence of significant equatorial faunal exchanges between both sides of the Panthalassa at that time. It also suggests that, in addition to the potential stepping stones represented by Panthalassic terranes, vigorous equatorial oceanic currents must have contributed largely to the dispersal of ammonoids during such time intervals. [source] Zircon U,Pb ages and tectonic implications of ,Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast ChinaISLAND ARC, Issue 4 2004Yanbin Zhang Abstract The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called ,Caledonian' granitoids), extending east,west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical ,Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U,Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285,116 Ma). This indicates that no ,Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249,245 Ma), Jurassic (192,168 Ma) and Cretaceous (119,116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249,245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi,Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin. [source] SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic agesJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006F. L. LIU Abstract Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu-Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh-pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark-luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white-luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542,693 °C and 1.8,2.1 GPa. In contrast, the UHP metamorphic domains are grey-luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739,866 °C and >5.5 GPa. The outermost retrograde rims have dark-luminescent CL images, and contain low- P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP-MS trace-element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U-Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823,503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254,239 Ma, the UHP growth domains occurred at 238,230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218,206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55,60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165,175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid-crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P,T conditions are 9,10 km Myr,1 and 6.4 km Myr,1, respectively, and these rapid subduction,exhumation rates may explain the obtained P,T,t path. Such a fast exhumation suggests that Sulu-Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth. [source] Lystrosaurus species composition across the Permo,Triassic boundary in the Karoo Basin of South AfricaLETHAIA, Issue 2 2007JENNIFER BOTHA Lystrosaurus is one of the few therapsid genera that survived the end-Permian mass extinction, and the only genus to have done so in abundance. This study identifies which species of Lystrosaurus have been recovered from Permian and Triassic strata to determine changes in the species composition across the Permo,Triassic (P,T) boundary in the Karoo Basin of South Africa. Data generated from museum collections and recent fieldwork were used to stratigraphically arrange a total of 189 Lystrosaurus specimens to determine which species survived the extinction event. Results reveal that L. curvatus and L. maccaigi lived together on the Karoo floodplains immediately before the extinction event. L. maccaigi did not survive into the Triassic in South Africa. L. curvatus survived, but did not flourish and soon became extinct. Two new species of Lystrosaurus, L. murrayi and L. declivis, appeared in the Early Triassic. It is possible that L. murrayi and L. declivis occupied different niches to L. maccaigi and L. curvatus, and had special adaptations that were advantageous in an Early Triassic environment. We suggest that L. maccaigi may be used as a biostratigraphic marker to indicate latest Permian strata in South Africa and that, in support of previous proposals, the genus Lystrosaurus should not be used as a sole indicator of Triassic-aged strata. Our field data also show that L. curvatus may be regarded as a biostratigraphic indicator of the P,T boundary interval. [source] Palaeoecological significance of a new Griesbachian (Early Triassic) gastropod assemblage from OmanLETHAIA, Issue 1 2005JAMES WHEELEY A new Early Triassic (Griesbachian) gastropod fauna from the Al Jil Formation of Oman is described. Early Triassic faunas from elsewhere (e.g. the Italian Dolomites and the western USA) are typically of low diversity and high dominance, usually attributed to environmental stress in the immediate aftermath of the end-Permian mass extinction event. The new Oman fauna has, by contrast, relatively high diversity, low dominance and a more even spread of individuals between taxa. It is the most diverse Griesbachian fauna known to date. This is attributed to the favourable (i.e. well-oxygenated) conditions under which the fauna lived. This uncharacteristic Griesbachian gastropod fauna demonstrates that, in the absence of oceanic anoxia, biotic recovery after the end-Permian extinction event may occur surprisingly quickly (within one conodont zone). The fauna is also partially silicified, which has increased its preservation potential relative to other Griesbachian gastropod assemblages. However, only one reappearing Lazarus genus is present in the Oman fauna. This suggests that there was some other control on the abundance of Lazarus genera at this time, other than the absence of silicified faunas as previously suggested. [source] GUODUNITES, A LOW-PALAEOLATITUDE AND TRANS-PANTHALASSIC SMITHIAN (EARLY TRIASSIC) AMMONOID GENUSPALAEONTOLOGY, Issue 2 2009ARNAUD BRAYARD Abstract:, Based on new, bed-rock controlled material from Oman and Utah, USA, the Early Triassic genus Guodunites, which was recently erected on the basis of scarce specimens from northwestern Guangxi, South China, is now shown to be a representative of Proptychitidae. This solves the question of the previously unknown phylogenetic affinity of this genus. The genus is restricted to the late middle Smithian, and to date, its biogeographical distribution comprises Oman, South China and Utah, thus indicating an essentially low palaeolatitudinal distribution during the Early Triassic. Its palaeobiogeographical distribution further strengthens the existence of significant equatorial faunal exchanges between both sides of the Panthalassa at that time. It also suggests that, in addition to the potential stepping stones represented by Panthalassic terranes, vigorous equatorial oceanic currents must have contributed largely to the dispersal of ammonoids during such time intervals. [source] GEOMETRIC MORPHOMETRICS OF THE SKULL ROOF OF STEREOSPONDYLS (AMPHIBIA: TEMNOSPONDYLI)PALAEONTOLOGY, Issue 2 2006C. TRISTAN STAYTON Abstract:, Geometric morphometric analysis using relative warps is applied to the skull roof of 62 species of stereospondyls and their closest outgroups (i.e. basal archegosauriforms) from among temnospondyl amphibians. Twenty-one landmarks and five taxonomic groups are used for comparisons. Their skull evolution is quantified in a morphospace defined by two relative warps axes. The majority of groups show poor concordance between morphological and phylogenetic distances. The only exception is represented by Yates and Warren's study of stereospondyl relationships, in which concordance is high. Only basal archegosauriforms and rhinesuchids show significant overlap in morphospace, although this might be due to low sample sizes. Regression of estimated mean disparity against taxon sample size shows that species within both the trematosauroid and the rhytidostean groups are more widely dispersed in morphospace than species belonging to any of the remaining stereospondyl groups. Stereospondyl skull evolution was characterized by divergence between major clades and convergence within those clades. Changes in patterns of morphospace occupation through time agree with the hypothesis of an ,explosive' radiation in the early Early Triassic, after the extinction of basal archegosauriforms at the end of the Permian. [source] |