Early Summer (early + summer)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2005
Jozien BM Goense
Abstract Frogs rely on acoustic signaling to detect, discriminate, and localize mates. In the temperate zone, reproduction occurs in the spring, when frogs emerge from hibernation and engage in acoustically guided behaviors. In response to the species mating call, males typically show evoked vocal responses or other territorial behaviors, and females show phonotactic responses. Because of their strong seasonal behavior, it is possible that the frog auditory system also displays seasonal variation, as evidenced in their vocal control system. This hypothesis was tested in male Northern leopard frogs by evaluating the response characteristics of single neurons in the torus semicircularis (TS; a homolog of the inferior colliculus) to a synthetic mating call at different times of the year. We found that TS neurons displayed a seasonal change in frequency tuning and temporal properties. Frequency tuning shifted from a predominance of TS units sensitive to intermediate frequencies (700,1200 Hz) in the winter, to low frequencies (100,600 Hz) in the summer. In winter and early spring, most TS neurons showed poor, or weak, time locking to the envelope of the amplitude-modulated synthetic call, whereas in late spring and early summer the majority of TS neurons showed robust time-locked responses. These seasonal differences indicate that neural coding by auditory midbrain neurons in the Northern leopard frog is subject to seasonal fluctuation. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005 [source]


Separating host-tree and environmental determinants of honeydew production by Ultracoelostoma scale insects in a Nothofagus forest

ECOLOGICAL ENTOMOLOGY, Issue 4 2007
ROGER J. DUNGAN
Abstract 1.,Sugar-rich honeydew excreted (,produced') by insects feeding on phloem sap is a key energy flow in a range of temperate and tropical ecosystems. The present study measured honeydew produced by Ultracoelostoma sp. (Homoptera: Coelostomidiidae) scale insects feeding on Nothofagus solandri var. solandri (Hook f.) Oerst. trees in a temperate evergreen forest in New Zealand. Simultaneous measurements of environmental variables and canopy photosynthesis were conducted to allow separation of host-tree and environmental determinants of honeydew production. These relationships were further examined in experiments where canopy photosynthesis was manipulated by shading or plant nitrogen levels increased by foliar spray. 2.,Rates of honeydew production varied nine-fold from a maximum (± 1 SE) of 64.4 ± 15.2 mg dry mass m,2 bark h,1 in early summer (December) to a minimum of 7.4 ± 4.2 mg m,2 h,1 in winter (August). Rates of production measured 1.4 m from the base of the trees' stems varied significantly with stem diameter, and were higher on medium-sized (18 cm diameter) than small or large stems. 3.,Rates of production were significantly related to environmental conditions over the hours preceding measurement (air temperature and air saturation deficit averaged over the preceding 24 and 12 h respectively). There was no evidence that rates of production were directly related to short-term changes in the supply of carbohydrates from the canopy (either when compared with measurements of unmanipulated photosynthetic rate, or after sugar levels were manipulated by shading 80% of host-trees' leaf area), or to changes in phloem nitrogen content. 4.,The results show that there is no clear effect of host-tree carbon supply on honeydew production; if production is related to photosynthesis, the effect of this is much less important that the large and significant direct effect of environmental conditions on honeydew production. [source]


Nocturnal migration of dragonflies over the Bohai Sea in northern China

ECOLOGICAL ENTOMOLOGY, Issue 5 2006
HONG-QIANG FENG
Abstract 1.,A sudden increase and subsequent sharp decrease of catches of dragonflies in a searchlight trap, with Pantala flavescens Fabricius (Odonata: Libellulidae) predominating, observed at Beihuang Island in the centre of the Bohai Gulf, in 2003 and 2004, indicated a seasonal migration of these insects over the sea during the night in China. The movements were associated with the onset of fog. 2.,Simultaneous radar observations indicated that the nocturnally migrating dragonflies generally flew at altitudes of up to 1000 m above sea level, with high density concentrations at about 200,300 or 500 m; these concentrations were coincident with the temperature inversion. 3.,During early summer, the dragonflies oriented in a downwind direction, so that the displacement direction varied between different altitudes. In contrast, during late summer, the dragonflies were able to compensate for wind drift, even headwind drift, so as to orient south-westward no matter how the wind changed, and thus the displacement direction was towards the south-west. 4.,The duration of flight, estimated from the variation of area density derived from radar data and hourly catches in the searchlight trap through the night, was about 9,10 h. The displacement speed detected using radar was ,5,11 m s,1. Therefore, the dragonflies might migrate 150,400 km in a single flight. 5.,The dragonflies were thought to originate in Jiangsu province and they migrated into north-east China to exploit the temporary environment of paddy fields in early summer. Their offspring probably migrated back south during late summer and autumn. [source]


Habitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lake

ECOLOGY OF FRESHWATER FISH, Issue 1 2007
M.-A. Svenning
Abstract,,, Habitat and diet of Arctic charr Salvelinus alpinus (L.) were studied by monthly sampling from late autumn to early summer in Linnévatn, Svalbard (78°3,N, 13°50,E). This is the first year-round study of a population of charr in the High Arctic, with samples being taken every 5,7 weeks. The ice cover lasted for more than 9 months, from mid-October to late July, with the greatest thickness in mid-May. Although most charr occupied the littoral zone during winter, the highest densities in April and October were found in the deeper areas (20 m) of the lake. The fish fed at all times of the year, but the number of stomachs with food and the stomach-filling indices were lowest during the darkest part of the season. The diet of smaller charr (<15 cm) varied strongly with season, showing a dominance of zooplankton in late autumn and chironomids in winter (larvae) and summer (pupae). The food choice was in accordance with the density of food items available. Larger fish (,15 cm) were mostly cannibalistic during the entire year. [source]


Denil fishway utilization patterns and passage of several warmwater species relative to seasonal, thermal and hydraulic dynamics

ECOLOGY OF FRESHWATER FISH, Issue 4 2001
C. M. Bunt
Abstract , Two different Denil fishways on the Grand River, Ontario, were used as check-points to evaluate the upstream movement of fishes past a low-head weir and to examine the proportions and inferred swimming performance of non-salmonid warmwater fishes that used each fishway type. Traps installed at fishway exits were used to collect fish during 24-hour sampling periods, over 40,51 days each year, from 1995 to 1997. Passage rates, size selectivity, water temperature, water velocity and turbidity for the periods of maximum passage for each year were examined. General species composition from trap samples shifted from catostomids to cyprinids to ictalurids to percids and centrarchids, with some overlap, as water temperatures increased from 8 °C to 25 °C in the spring and early summer. Water depths, and therefore water velocities in each fishway, were independent of river discharge due to variable accumulations of debris on upstream trash-racks. Relationships between the water velocity and the swimming and position-holding abilities of several species emerged. Turbidity was directly related to river discharge and precipitation events, and many species demonstrated maximum fishway use during periods of increased turbidity. This study 1) provided evidence of strongly directional upstream movements among several species that were previously considered non-migratory and 2) describes physical and hydraulic conditions during fishway use for 29 non-salmonid fish species., [source]


Population persistence of the parasitoid fly Zaira cinerea (Fallén) (Diptera: Tachinidae) utilizing multiple host carabid beetles with different seasonality and quality

ENTOMOLOGICAL SCIENCE, Issue 3 2010
Atsushi OHWAKI
Abstract Zaira cinerea (Fallén) is a parasitoid fly (Diptera: Tachinidae) that attacks adult carabid beetles. To better understand mechanisms of population persistence in this species, we examined seasonality of host beetle abundance, the frequency of parasitism, and the timing of fly eclosion. In addition, we evaluated host quality using numbers of larvae or puparia per individual beetle as a measure of quality. The fly parasitized only large carabids (,15 mm body length); the lengths of fly puparia reached 7.4,10.8 mm during development in beetle abdomens, and larger hosts are likely essential. Of the 18 large carabid species collected in this study, we chose two, Carabus maiyasanus Bates and Leptocarabus procerulus (Bates), because they were large and abundant (87% of total catch). The two carabids had different phonologies; C. maiyasanus was abundant from spring to summer, and its abundance dropped sharply in autumn, while L. procerulus was abundant in autumn and rare from spring to summer except July. Parasitism was observed in all the months from May to November except June, and adult flies eclosed more than once a year (in early summer, late summer, and mid-autumn), indicating that the species is multivoltine. Host quality of L. procerulus was higher than that of C. maiyasanus. Carabus maiyasanus was mainly used as a host from spring to summer, and L. procerulus was used in autumn. Thus, adult beetles of one or both species are available over most of spring, summer, and autumn, allowing population persistence of this fly species over time. [source]


Comparison of the life history strategies of three Dysdercus true bugs (Heteroptera: Pyrrhocoridae), with special reference to their seasonal host plant use

ENTOMOLOGICAL SCIENCE, Issue 4 2005
Katsuyuki KOHNO
Abstract The life history strategy and seasonal host plant use of three Dysdercus bugs (D. cingulatus, D. poecilus and D. decussatus) were compared based on 2 years of twice monthly observations on Ishigaki-jima Island (24°N, 124°E) in the southernmost part of Japan. Dysdercus poecilus reproduced almost year round, exclusively on Sida rhombifolia, which bears fruit and/or seeds almost year round. Dysdercus cingulatus reproduced successively on various malvaceous and bombacaceous plant species, according to their seasonal fruiting cycles. Its robust reproduction was observed on Hibiscus makinoi during winter months and on Chorisia speciosa and Bombax ceiba in early summer, whereas small-scale reproduction was observed on various malvaceous plant species during the summer and autumn months. Dysdercus decussatus reproduced on Hibiscus tiliaceus and Thespesia populnea during the summer months, when these host plants bear abundant fruit and/or seeds, and its adults formed conspicuous aggregations without copulation on the underside of the leaves of those plants from November to the subsequent May. Each Dysdercus species showed a species-specific life history strategy according to the differences in the phenology of their host plants. [source]


Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla)

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2008
Katarzyna Bartkowska
Abstract Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10,30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews. [source]


Temperature and soil moisture effects on dissolved organic matter release from a moorland Podzol O horizon under field and controlled laboratory conditions

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007
M. I. Stutter
Summary Organic upland soils store large amounts of humified organic matter. The mechanisms controlling the leaching of this C pool are not completely understood. To examine the effects of temperature and microbial cycling on C leaching, we incubated five unvegetated soil cores from a Podzol O horizon (from NE Scotland), over a simulated natural temperature cycle for 1 year, whilst maintaining a constant soil moisture content. Soil cores were leached with artificial rain (177 mm each, monthly) and the leachates analysed for dissolved organic carbon (DOC) and their specific C-normalized UV absorbance determined (SUVA, 285 nm). Monthly values of respiration of the incubated soils were determined as CO2 efflux. To examine the effects of vegetation C inputs and soil moisture, in addition to temperature, we sampled O horizon pore waters in situ and collected five additional field soil cores every month. The field cores were leached under controlled laboratory conditions. Hysteresis in the monthly amount of DOC leached from field cores resulted in greater DOC on the rising, than falling temperature phases. This hysteresis suggested that photosynthetic C stimulated greater DOC losses in early summer, whereas limitations in the availability of soil moisture in late summer suppressed microbial decomposition and DOC loss. Greater DOC concentrations of in-situ pore waters than for any core leachates were attributed to the effects of soil drying and physico-chemical processes in the field. Variation in the respiration rates for the incubated soils was related to temperature, and respiration provided a greater pathway of C loss (44 g C m,2 year,1) than DOC (7.2 g C m,2 year,1). Changes in SUVA over spring and summer observed in all experimental systems were related to the period of increased temperature. During this time, DOC became less aromatic, which suggests that lower molecular weight labile compounds were not completely mineralized. The ultimate DOC source appears to be the incomplete microbial decomposition of recalcitrant humified C. In warmer periods, any labile C that is not respired is leached, but in autumn either labile C production ceases, or it is sequestered in soil biomass. [source]


The role of oceanographic conditions and plankton availability in larval fish assemblages off the Catalan coast (NW Mediterranean)

FISHERIES OCEANOGRAPHY, Issue 3 2010
M. PILAR OLIVAR
Abstract In the northwestern Mediterranean, most fish species reproduce in early summer and fewer in the autumn mixing period. This study analyses and compares larval fish assemblages (LFA) in both seasons, and is the first attempt to characterize LFA structure for the autumn period. We analyze horizontal and vertical distribution of fish larvae and the micro- and mesozooplankton biomass and abundance of the main zooplankton groups. The oceanographic situation was analyzed through the study of data from CTD, N,-Shuttle and ADCP surveys. LFA were determined by ordination analyses based on larval abundance, and the relationships between larval assemblages and environmental variables were investigated through canonical correspondence analysis. The importance of some hydrographic variables (temperature, salinity and stability of the water column), current fields (along-shelf and across-shelf transport) and the abundance of zooplankton are discussed as important factors shaping the structure of larval assemblages. In early summer, LFA were mainly structured by a combination of bathymetry and trophic components, although sea surface temperature also played a role in shaping the horizontal larval distributions. In autumn, trophic variables were the main factors influencing the shelf-dwelling species assemblage. Larvae of oceanic species, on the other hand, were not related to trophic variables but were more affected by current fields. [source]


Cohort splitting in bluefish, Pomatomus saltatrix, in the US mid-Atlantic Bight

FISHERIES OCEANOGRAPHY, Issue 3 2008
JODY L. CALLIHAN
Abstract Atlantic bluefish exhibit cohort splitting, whereby two modes of juvenile recruits originate from spatially distinct spring- and summer-spawning regions in US Atlantic shelf waters. We evaluate the pattern of cohort splitting in a transition area (US Maryland coastal region and Chesapeake Bay) between the two major spawning regions. Spring and summer cohorts were differentially represented in Maryland estuarine (Chesapeake Bay) and coastal waters. The spring cohort was dominant in Chesapeake Bay, but was not well represented in the ocean environment, and the converse true for the summer cohort. We hypothesized that ocean temperatures control the bimodal spawning behavior and extent of cohort splitting. As evidence, we observed an intervening early summer cohort produced in years when shelf temperatures during early summer were suitably warm for spawning. In most years however, two dominant cohorts were evident. We propose that vernal warming dynamics in the mid-Atlantic Bight influence spawning behavior and the resultant bimodal pattern of seasonal juvenile cohort production commonly observed along the US east coast. [source]


The importance of episodic weather events to the ecosystem of the Bering Sea shelf

FISHERIES OCEANOGRAPHY, Issue 2 2005
NICHOLAS A. BOND
Abstract Climate variability on decadal time scales is generally recognized to influence high-latitude marine populations. Our recent work in studying air,sea interactions in the Bering Sea suggests that interannual to decadal climate variability is important through its modulation of the frequencies and magnitudes of weather events on intraseasonal time scales. We hypothesize that it is these weather events that directly impact the marine ecosystem of the Bering Sea shelf. The linkages between the event-scale weather and the ecosystem are illustrated with three examples: walleye pollock (Theragra chalcogramma), Tanner crabs (Chionoecetes bairdi), and coccolithophorid phytoplankton (Emiliania huxleyi). We hypothesize that the strong recruitment of walleye pollock that occurred in 1978, 1982, and 1996 can be attributed in part due to the seasonably strong storms that occurred in the early summer of those years. These storms caused greater than normal mixing of nutrients into the euphotic zone which presumably led to sustained primary productivity after the spring bloom and, possibly, enhanced prey concentrations for pollock larvae and their competitors. Recruitment of Tanner crab was particularly strong for the 1981 and 1984 year-classes. These years had periods of prominent east wind anomalies along the Alaska Peninsula during the previous winter. Such winds promote flow through Unimak Pass, and hence an enhanced flux of nutrient-rich water onto the shelf. This mechanism may have ultimately resulted in favorable feeding conditions for Tanner crab larvae. Finally, an unprecedented coccolithophorid bloom occurred over the Bering Sea shelf in the summer of 1997. This summer featured lighter winds and greater insolation than usual after a spring that included a very strong May storm. This combination brought about a warm, nutrient-poor upper mixed layer by mid-summer. This provided a competitive advantage for coccolithophorid phytoplankton in 1997 and to a lesser extent in 1998. Unusually high concentrations of coccolithophores persisted for the following two years although physical environmental conditions did not remain favorable. While slow variations in the overall aspects of the physical environment may be important for setting the stage, we propose that the significant multi-year adjustments in the marine ecosystem of the Bering Sea shelf are more directly caused by major air,sea interaction events on intraseasonal time scales. [source]


The effects of water-level manipulation on the benthic invertebrates of a managed reservoir

FRESHWATER BIOLOGY, Issue 5 2010
DANIEL C. McEWEN
Summary 1. Reservoir creation and management can enhance many ecological services provided by freshwater ecosystems, but may alter the natural conditions to which aquatic biota have adapted. Benthic macroinvertebrates often reflect environmental conditions, and this community may be particularly susceptible to water-level changes that alter sediment exposure, temperature regime, wave-induced sediment redistribution and basal productivity. 2. Using a before,after control,impact experimental design, we assessed changes in macroinvertebrate community structure corresponding with changes in water-level management in two lentic systems in the Voyageurs National Park, Minnesota, U.S.A. Littoral zone (depths 1,5 m) benthic macroinvertebrate assemblages were sampled in Rainy Lake (control system) and Namakan Reservoir (impact system) in 1984,85, and again in 2004,05 following a change in water-level management that began in January 2000. The new regime reduced the magnitude of winter drawdown in Namakan Reservoir from 2.5 to 1.5 m, and allowed the reservoir to fill to capacity in late May, a month earlier than under the prior regime. Rainy Lake water levels were not altered substantially. 3. We found changes in macroinvertebrate community structure in Namakan Reservoir relative to Rainy Lake at 1,2 m depths but not at 3,5 m depths. These shallower depths would have been most directly affected by changes in sediment exposure and ice formation. 4. In 2004,05, Namakan Reservoir benthos showed lower overall abundance, more large-bodied taxa and an increase in non-insect invertebrates relative to 1984,85, without corresponding changes in Rainy Lake. 5. Changes in the benthic community in Namakan may reflect cooler water in spring and early summer as well as lower resource availability (both autochthonous production and allochthonous inputs) under the new regime. [source]


Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake

FRESHWATER BIOLOGY, Issue 10 2008
JENG-WEI TSAI
Summary 1. We used high-frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid-autumn but dropped during the typhoon season and winter. Yuan-Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ,39.6 ,mole O2 m,3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon-induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere. [source]


Temporal dynamics of dissolved oxygen in a floating,leaved macrophyte bed

FRESHWATER BIOLOGY, Issue 8 2008
KARA GOODWIN
Summary 1. Oxygen concentrations in shallow vegetated areas of aquatic systems can be extremely dynamic. In these waters, characterizing the average oxygen content or frequency of low oxygen events (hypoxia) may require high frequency measurements that span seasons and even years. In this study, moored sondes were used to collect 15-min interval dissolved oxygen (DO) readings in an embayment of the tidal Hudson River with dense coverage by an invasive floating leaved plant (Trapa natans) and in adjacent open waters. Measurements were made from late spring to summer over a 2-year period (2005, 2006). 2. Oxygen concentrations were far more dynamic in the vegetated embayment than in the adjacent open waters and while hypoxic conditions never occurred in the open waters, they occurred frequently in the vegetated site. Overall the vegetated site was hypoxic (DO < 2.5 mg L,1) 30% of the time and had an average oxygen concentration of 5.1 mg L,1. Oxygen concentration was significantly (P < 0.0001, anova) related to season, year and tide. Low tide periods during summer of 2006 had the lowest average oxygen concentration and the highest frequency of hypoxia. 3. The greater hypoxia in summer than spring is related to changes in plant morphology. In the spring and early summer when plants are submersed hypoxia occurs at lower frequency and duration than in the summer when dense floating vegetation covers the water. The tidal pattern in oxygen is related to hydrologic exchange with the non-vegetated open waters. Year-to-year variation may be related to relatively small changes in plant biomass between years. 4. Oxygen concentrations in aquatic systems can be critical to habitat quality and can have cascading impacts on redox sensitive nutrient and metal cycling. For some systems with dynamic oxygen patterns neither weekly spot sampling nor short-duration, high-frequency measurements may be sufficient to characterize oxygen conditions of the system. [source]


Timing of predation by rainbow trout controls Daphnia demography and the trophic status of a Minnesota lake

FRESHWATER BIOLOGY, Issue 6 2005
LEIF K. HEMBRE
Summary 1. Stocking of lakes with rainbow trout is a common practice that presents a potential conflict for lake managers who must balance the interests of anglers with those concerned that zooplanktivory by trout may trigger a trophic cascade and result in decreased water clarity. 2. This study examined how the timing of trout stocking (autumn versus spring) in a Minnesota (U.S.A.) lake affected (i) the population dynamics of their zooplankton food supply (Daphnia pulicaria), (ii) phytoplankton biomass and water clarity and (iii) trout survival. Sizes of both Daphnia and trout populations were estimated acoustically with high-frequency (192 kHz) sonar. 3. Daphnia were nearly eliminated from the lake during winters after trout were stocked in autumn. In both of these years (1996 and 1997), the Daphnia population was small in the spring, and grew during the summer and into the autumn as the trout population diminished. 4. The lake was then stocked in spring for 2 years (1998 and 1999). This fisheries manipulation alleviated predation over the winter, but increased predation on D. pulicaria during the spring, summer and autumn. However, the high mortality caused by the spring-stocked trout was offset by even higher rates of reproduction by the relatively large populations of fecund Daphnia that survived the winter in 1998 and 1999. 5. Grazing by these dense populations of Daphnia produced clear-water phases during May and June that were inhibited in autumn stocking years. In addition, the large Daphnia populations present during the spring and early summer of 1998 and 1999 provided abundant forage for trout. 6. This fisheries manipulation achieved seemingly mutually exclusive management objectives: a robust planktivorous sport fishery, and clear water for other forms of recreation. [source]


The life history of Salicaceae living in the active zone of floodplains

FRESHWATER BIOLOGY, Issue 4 2002
S. KARRENBERG
1.,Exposed riverine sediments are difficult substrata for seedling establishment because of extremes in the microclimate, poor soil conditions and frequent habitat turnover. Various species of willows and poplars (Salicaceae) appear to be particularly successful in colonising such sediments and are often dominant in floodplain habitats throughout the northern temperate zone. 2.,In many Salicaceae regeneration seems to be adapted to regular disturbance by flooding. Efficient seed dispersal is achieved by the production of abundant seed in spring and early summer, which are dispersed by air and water. Seeds are short-lived and germinate immediately on moist surfaces. Seedling establishment is only possible if these surfaces stay moist and undisturbed for a sufficient period of time. 3.,Larger plants of Salicaceae have exceptional mechanical properties, such as high bending stability, which enable them to withstand moderate floods. If uprooted, washed away or fragmented by more powerful floods these plants re-sprout vigorously. 4.,While these life characteristics can be interpreted as adaptations to the floodplain environment, they may also cause a high genetic variability in populations of Salicaceae and predispose Salicaceae to hybridization. Thus, a feed back between adaptive life history characteristics and the evolutionary process is proposed. [source]


Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae

FUNCTIONAL ECOLOGY, Issue 3 2008
F. Vandelook
Summary 1Requirements for dormancy break and seed germination are specific for all species and depend chiefly on phylogeny, geographical distribution, habitat preference and life cycle. Studying germination requirements of closely related species with a similar geographic distribution allows one to attribute variation in germination requirements to differences in habitat preference between the species. 2We investigated requirements for dormancy break and the effect of environmental signals on induction of germination in seeds of four closely related Caryophyllaceae species growing in a variety of habitats (Moehringia trinervia, Stellaria holostea, S. nemorum and S. graminea). The species studied depend on disturbances in the vegetation for seed germination and subsequent seedling establishment. 3Seedlings of all four species emerged both in summer and spring. Stellaria nemorum and M. trinervia, both growing in temperate forests, emerged mainly in summer under a closed forest canopy. Seeds of S. graminea, occurring in grasslands, did germinate in summer at an open site, but could not germinate under a closed forest canopy. Seedlings of S. holostea were observed in late summer when buried at an open site or in early spring when sown in a forest patch. 4Seeds of S. holostea and M. trinervia were completely dormant at dispersal in early summer, while germination was low in fresh seeds of S. graminea and S. nemorum. Dormancy was broken, to a certain extent, during all three after-ripening treatments applied (dry storage, cold and warm stratification). 5The effect of three gap-detection signals (light, fluctuating temperatures, nitrates) on germination of fresh and dry stored seeds was tested. Seeds of S. holostea only germinated in response to daily fluctuating temperatures. Although light was the most important signal affecting germination of S. graminea and M. trinervia, we also observed a positive effect of fluctuating temperatures and nitrates on germination. The effect of fluctuating temperatures on germination of S. nemorum was small in both light and dark incubated seeds. Seed germination in this species generally occurred in response to addition of light and nitrates. 6This study on dormancy breaking and germination requirements of the four species enabled us to expose, sometimes subtle, differences in germination requirements. These contrasting germination patterns were related to differences in the species' habitat preferences. [source]


Linking environmental warming to the fitness of the invasive clam Corbicula fluminea

GLOBAL CHANGE BIOLOGY, Issue 12 2009
MARKUS WEITERE
Abstract Climate warming is discussed as a factor that can favour the success of invasive species. In the present study, we analysed potential fitness gains of moderate warming (3 °C above field temperature) on the invasive clam Corbicula fluminea during summer and winter. The experiments were conducted under seminatural conditions in a bypass-system of a large river (Rhine, Germany). We showed that warming in late summer results in a significant decrease in the clams' growth rates (body mass and shell length increase) and an increase in mortality rate. The addition of planktonic food dampens the negative effect of warming on the growth rates. This suggests that the reason for the negative growth effect of temperature increase in late summer is a negative energetic balance caused by an enhanced metabolic rate at limited food levels. Warming during early summer revealed contrasting effects with respect of body mass (no warming effect) and shell length (increased shell growth with warming). This differential control of both parameters further enhances the loss of the relative (size-specific) body mass with warming. In contrast, warming in winter had a consistently positive effect on the clams' growth rate as demonstrated in two independent experiments. Furthermore, the reproduction success (as measured by the average number of larvae per clam) during the main breeding period (April) was strongly enhanced by experimental warming during winter, i.e. by eight times during the relatively cold winter 2005/2006 and by 2.6 times during the relatively warm winter 2007/2008. This strong, positive effect of moderate winter warming on the clams' fitness is probably one reason for the recent invasion success of C. fluminea in the northern hemisphere. However, warm summer events might counteract the positive winter warming effect, which could balance out the fitness gains. [source]


Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2 -enrichment: a six-year-minirhizotron study

GLOBAL CHANGE BIOLOGY, Issue 3 2008
SETH G. PRITCHARD
Abstract Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free-air-CO2 -enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18-year-old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2 -enrichment on fine root proliferation tended to shift from shallow (0,15 cm) to deeper soil depths (15,30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2 -enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m,2 yr,1 in CO2 -enriched plots and 130 g dw m,2 yr,1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m,2 yr,1 in CO2 -enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2 -enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south-eastern pine forests. [source]


Effects of climate on population fluctuations of ibex

GLOBAL CHANGE BIOLOGY, Issue 2 2008
VIDAR GRŘTAN
Abstract Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate-induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions. [source]


Long-term carbon exchange in a sparse, seasonally dry tussock grassland

GLOBAL CHANGE BIOLOGY, Issue 10 2004
John E. Hunt
Abstract Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long-term mean=646 mm). The vegetation was sparse with total above-ground biomass of only 1410 g m,2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m,2 day,1, and it occurred before mid-summer in both years. On an annual basis, for the dry year, 9 g C m,2 was lost to the atmosphere. During the wet year, 41 g C m,2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled-up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well-watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral-N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m,3) to the driest value obtained (0.04 m3 m,3). Rainfall after periods of drought resulted in large, but short-lived, respiration pulses that were curvilinearly related to the increase in root-zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term. [source]


Herbage growth rates on heterogeneous swards as influenced by sward-height classes

GRASS & FORAGE SCIENCE, Issue 1 2009
ahin Demirba
Abstract The contribution of four classes of sward height to daily herbage growth rates of a heterogeneous sward in eight periods throughout a grazing season was investigated in two continuous cattle-grazing systems differing in intensity (moderate stocking rate: MC; lenient stocking rate: LC). At the beginning and end of periods of 12 to 28 d, the compressed sward height (CSH) was measured in exclusion cages at eighteen fixed points per cage to derive daily growth rates for the four classes of sward height. Stratified calibrations were made to relate sward height to herbage mass for each treatment in each period. Quadratic regressions described the relationship between herbage growth rate and initial CSH for each treatment in each period. For scaling up to the scale of the plot, CSH was measured monthly at 100 points per plot. Daily herbage growth rates declined from more than 100 kg dry matter (DM) ha,1 d,1 on both treatments at the beginning of the grazing season to 20 kg DM ha,1 d,1 or less, especially on treatment LC. This was due to the larger area covered by tall herbage on treatment LC than on treatment MC. On treatment MC, daily herbage growth rate was predominantly derived from short sward areas of up to 12 cm in height while sward areas taller than 12 cm contributed most to daily growth rates on treatment LC in early summer. The method used is considered suitable for estimating daily herbage growth rates of different classes of sward height in extensively managed pastures and can easily be adapted to deal with more heterogeneous swards than used in this study. [source]


Effects of season, variety and botanical fractions on oxalate content of napiergrass (Pennisetum purpureum Schumach)

GRASSLAND SCIENCE, Issue 4 2006
M. M. Rahman
Abstract Various tropical grasses sometimes contain oxalate in sufficient concentration as to induce calcium deficiency in grazing animals. Napiergrass (Pennisetum purpureum), a useful tropical grass for ruminants was examined for oxalate levels with regard to season, variety and botanical fractions. It was observed that oxalate content was significantly (P < 0.001) affected by the season with the highest value (3.77%) being associated with early summer samples and the lowest value (1.76%) with late autumn samples. Compared to a normal, non-dwarf variety, a dwarf variety exhibited a higher oxalate content but the difference was not statistically significant. With regard to the botanical fractions, oxalate content was significantly (P < 0.05) higher (2.78%) in leaf tissues compared to stem with leaf sheath (2.05%). In another experiment, a late, dwarf variety was re-grown four times to evaluate re-growth period effects on oxalate content during the early summer. Oxalate content increased gradually from the re-growth period 1 (6 June to 28 June) to re-growth period 3 (21 June to 12 July), and declined in re-growth period 4 (28 June to 19 July). Results suggest that when napiergrass is grown in early summer, it could achieve oxalate levels that are toxic to ruminants. [source]


Nitrogen balance and seasonal fluctuations in soil nitrogen contents in a corn (Zea mays L)-rye (Secale cereale L) rotation field

GRASSLAND SCIENCE, Issue 1 2005
Yuzo Kurokawa
Abstract In a corn (Zea mays L)-rye (Secale cereale L) rotation field, the N output (plant uptake) and N input (crop residue and fertilizer applied) were measured for two years in order to evaluate the N balance in a forage production field. The soil was Low-humic Andosol (mesic Typic Hapludand). The disappearance of crop residues on both a dry matter and N basis, and the seasonal fluctuations of total, inorganic, and available soil N content in the field were investigated. The interaction between the nitrogen balance and the soil N contents are discussed. The total plant N uptake of the corn and rye exceeded the sum of the N input of the fertilizer applied and the N from crop residues, so the N balance of the corn-rye rotation had a negative value (two year average: ,8.4 gN m,2). After the gradual disappearance of crop residue on the dry matter basis, rapid disappearance on the N basis was observed. At the same time, the C/N ratio decreased to less than 20. The soil available (38.4,55.3 mg kg,1) and inorganic (21.5,45.2 mg kg,1) N had their lowest values in spring. After they increased in early summer, they decreased in late summer and increased in autumn. The total N (0.5,0.7%) gradually decreased during the experimental period. The results indicated that the soil-available N and inorganic N in the present study were highly dependent on the fertilizer-applied N. The relation among management practices, N input and soil available N contents are discussed. It is suggested that the negative N balance is one of the causes for a decrease in soil total N. [source]


Subglacial drainage system structure and morphology of Brewster Glacier, New Zealand

HYDROLOGICAL PROCESSES, Issue 3 2009
Ian Willis
Abstract A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye-tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid-summer, water pressures are closer to half-ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Modelling runoff from highly glacierized alpine drainage basins in a changing climate

HYDROLOGICAL PROCESSES, Issue 19 2008
Matthias Huss
Abstract The future runoff from three highly glacierized alpine catchments is assessed for the period 2007,2100 using a glacio-hydrological model including the change in glacier coverage. We apply scenarios for the seasonal change in temperature and precipitation derived from regional climate models. Glacier surface mass balance and runoff are calculated in daily time-steps using a distributed temperature-index melt and accumulation model. Model components account for changes in glacier extent and surface elevation, evaporation and runoff routing. The model is calibrated and validated using decadal ice volume changes derived from four digital elevation models (DEMs) between 1962 and 2006, and monthly runoff measured at a gauging station (1979,2006). Annual runoff from the drainage basins shows an initial increase which is due to the release of water from glacial storage. After some decades, depending on catchment characteristics and the applied climate change scenario, runoff stabilizes and then drops below the current level. In all climate projections, the glacier area shrinks dramatically. There is an increase in runoff during spring and early summer, whereas the runoff in July and August decreases significantly. This study highlights the impact of glaciers and their future changes on runoff from high alpine drainage basins. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Molecular identification and population dynamics of two species of Pemphigus (Homoptera: Pemphidae) on cabbage

INSECT SCIENCE, Issue 2 2009
Naiqi Chen
Abstract The poplar petiole gall aphid, Pemphigus populitransversus Riley, has been one of the major pests on cruciferous vegetable in the Rio Grande Valley (LRGV) of Texas since the late 1940s. It normally migrates from poplar trees to cruciferous vegetables in the fall, and migrates back to the trees in early spring of the coming year. Some root-feeding aphids were found on cruciferous vegetables in late spring and early summer in 1998 and the following years. Those aphids have been identified as Pemphigus obesinymphae Moran. This discovery completely changed the current knowledge about the root-feeding aphids on cruciferous vegetables in the LRGV. Due to their small size, morphological and feeding similarities between P. populitransversus and P. obesinymphae, their identification and distinction are difficult. In this study, random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) were used to distinguish these two species over a period of time when the two species occurred together, or separately, in cabbage fields. The two species occurred on cabbage at different times of the year, and overlapped from October to June. From May to October, both species migrated to their primary hosts. The apterous aphids found on cabbage in winter contained mainly P. obesinymphae, whereas in early spring more apterous P. populitransversus were recovered. The root-feeding aphids would feed on cabbage plants as long as this host was available even during the hot, dry summer in the LRGV, although their populations were generally low. Both RAPD and AFLP techniques were efficient in discriminating the two species that showed obviously genetic variability. These molecular techniques confirmed the existence of the two aphid species in apterous samples collected from the soil in cabbage fields in the LRGV, and the results performed by RAPD were confirmed by AFLP. Furthermore, the results suggest that RAPD technique was a better choice despite its reproducibility problem, as it was less time-consuming and required less technology, labor and expense than AFLP. [source]


Evidence for individualistic species assembly creating convergent predator:prey ratios among pond invertebrate communities

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2002
Michael J. Jeffries
summary 1,Predator,:,prey ratios are cited as examples of a community level pattern, which suggests underlying assembly rules. Consistent ratios may result from either holistic community interactions or individualistic species assembly. This study tested for evidence of holistic or individualistic explanations for the predator : prey ratios among invertebrate communities of temporary ponds. 2,Macroinvertebrate species were recorded from 30 adjacent experimental ponds, in January and early summer over 4 years. After the first 2 years either additional predatory or prey taxa were added to treatment ponds to skew the natural predator : prey ratios. Species richness and ratios were monitored for the following 2 years comparing treatment ponds subject to augmented predator or prey richness against unmanipulated control ponds. 3,The majority of species added to treatments established in their respective ponds initially creating unusually high or low predator : prey ratios. In the 2 years following manipulation the ratios in treatment and control ponds converged. The convergence resulted from the spread of the additional species across all the ponds rather than acquisition or extinction of species within treatment ponds compensating for the skewed ratios. 4,Convergent predator : prey ratios resulted from the spread of the augmented local species pool across the site rather than holistic community level adjustment within separate ponds. The results support individualistic models of community assembly as the explanation for convergent predator : prey ratios in pond habitats. [source]


Coevolution between crossbills and black pine: the importance of competitors, forest area and resource stability

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2009
C. W. BENKMAN
Abstract Studies of predator-prey interactions have found that geographically structured coevolution has played an important role in the adaptive diversification of crossbills (Loxia spp.). We extend those studies by considering common crossbills (L. curvirostra) in the Mediterranean where they rely on seeds in the cones of black pine (Pinus nigra). On the continent, where tree squirrels (Sciurus vulgaris) are present, enhanced defenses against crossbills were most evident in larger areas of pine forest. On islands in the absence of tree squirrels, crossbills and black pine have coevolved in a predator-prey arms race on Cyprus but not Corsica. In contrast to other conifers that island endemic crossbills rely upon, black pine does not hold seeds in its cones year round. Consequently, key to the strong crossbill,pine interaction on Cyprus is likely the presence of an alternative conifer that provides seeds during early summer when black pine seeds are scarce. [source]