Early Pattern (early + pattern)

Distribution by Scientific Domains


Selected Abstracts


Attachment style, affective loss and gray matter volume: A voxel-based morphometry study

HUMAN BRAIN MAPPING, Issue 10 2010
Stefania Benetti
Abstract Early patterns of infant attachment have been shown to be an important influence on adult social behavior. Animal studies suggest that patterns of early attachment influence brain development, contributing to permanent alterations in neural structure; however, there are no previous studies investigating whether differences in attachment style are associated with differences in brain structure in humans. In this study, we used Magnetic Resonance Imaging (MRI) and voxel-based morphometry (VBM) to examine for the first time the association between attachment style, affective loss (for example, death of a loved one) and gray matter volume in a healthy sample of adults (n = 32). Attachment style was assessed on two dimensions (anxious and avoidant) using the ECR-Revised questionnaire. High attachment-related anxiety was associated with decreased gray matter in the anterior temporal pole and increased gray matter in the left lateral orbital gyrus. A greater number of affective losses was associated with increased gray matter volume in the cerebellum; in this region, however, the impact of affective losses was significantly moderated by the level of attachment-related avoidance. These findings indicate that differences in attachment style are associated with differences in the neural structure of regions implicated in emotion regulation. It is hypothesized that early attachment experience may contribute to structural brain differences associated with attachment style in adulthood; furthermore, these findings point to a neuronal mechanism through which attachment style may mediate individual differences in responses to affective loss. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Cortical radial glial cells in human fetuses: Depth-correlated transformation into astrocytes

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003
Leonardo C. deAzevedo
Abstract In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 288,298, 2003 [source]


Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2009
Liliana Pedraza
Abstract Neurofascin-155 (NF155) and caspr are transmembrane proteins found at discrete locations early during development of the nervous system. NF155 is present in the oligodendrocyte cell body and processes, whereas caspr is on the axonal surface. In mature nerves, these proteins are clustered at paranodes, flanking the node of Ranvier. To understand how NF155 and caspr become localized to the paranodal regions of myelinated nerves, we have studied their distribution over time in myelinating cultures. Our observations indicate that these two proteins are recruited to the cell surface at the contact zone between axons and oligodendrocytes, where they trans-interact. This association explains the early pattern of caspr distribution, a helical coil that winds around the axon, resembling the turns of the myelin sheath. Caspr, an axonal membrane protein, therefore seems to move in register with the overlying myelinating cell via its interactions with myelin proteins. We suggest that NF155 is the glial cell membrane protein responsible for caspr distribution. The pair act as interacting partners on either side of the axoglial contact area. Most likely, there are other proteins on the axonal surface whose distribution is equally influenced by interaction with the nascent myelin sheath. The fact that caspr follows the movement of the spiraling membrane has a direct affect on the interpretation of the way in which myelin is formed. © 2009 Wiley-Liss, Inc. [source]


Effects of density and ontogeny on size and growth ranks of three competing tree species

JOURNAL OF ECOLOGY, Issue 2 2009
Suzanne B. Boyden
Summary 1Rank reversals in species performance are theoretically important for structuring communities, maintaining diversity and determining the course of forest succession. Species growth ranks can change with ontogeny or in different microenvironments, but interactions between ontogeny and the environment are not well-understood because of the lack of long-term forest competition studies. While early differences in growth among species may reflect intrinsic differences in shade-tolerance and physiology, ontogenetic trends in growth and variation in neighbourhood density and composition may change or even reverse early patterns of growth rankings. 2We experimentally studied spatial and temporal patterns of species interactions and growth for three northern tree species: Larix laricina, Picea mariana and Pinus strobus. We compared species size and growth rankings over an 11-year period, for different species mixtures planted at four density levels in north-eastern Minnesota, USA. 3The benefits of different growth strategies changed with ontogeny and density leading to reversals in the size rank of competing species over time and space. High-density stands promoted dominance and resource pre-emption by L. laricina, whereas lower-density stands favoured gradual accumulation of biomass and eventual dominance by P. strobus. In the absence of strong neighbour competition, ontogenetic trends in growth had greater influence on growth patterns. 4Species interactions affected the productivity of mixed stands vs. monocultures. Species generally grew more in monoculture than when planted with P. strobus at low density, or with L. laricina at high density. Only L. laricina and P. mariana showed potential for greater overall productivity, or over-yielding, when planted together than alone, probably because of improved resource uptake by the highly stratified canopy. 5Synthesis. Density predictably determined whether size-asymmetric growth or ontogenetic growth trends would drive early establishment and growth patterns. Variation in vertical and horizontal structure that results from early competitive dynamics can influence the successional trajectory or character of the mature forest. This study extends previous efforts to identify the causes of rank reversals in communities and understand the importance of temporal changes beyond the early years of seedling establishment. [source]