Eotaxin Levels (eotaxin + level)

Distribution by Scientific Domains


Selected Abstracts


Elemental signals regulating eosinophil accumulation in the lung

IMMUNOLOGICAL REVIEWS, Issue 1 2001
Paul S. Foster
Summary: In this review we identify the elemental signals that regulate eosinophil accumulation in the allergic lung. We show that there are two interwoven mechanisms for the accumulation of eosinophils in pulmonary tissues and that these mechanisms are linked to the development of airways hyperreactivity (AHR). Interleukin-(IL)-5 plays a critical role in the expansion of eosinophil pools in both the bone marrow and blood in response to allergen provocation of the airways. Secondly, IL-4 and IL-13 operate within the allergic lung to control the transmigration of eosinophils across the vascular bed into pulmonary tissues. This process exclusively promotes tissue accumulation of eosinophils. IL-13 and IL-4 probably act by activating eosinophil-specific adhesion pathways and by regulating the production of IL-5 and eotaxin in the lung compartment. IL-5 and eotaxin co-operate locally in pulmonary tissues to selectively and synergistically promote eosinophilia. Thus, IL-5 acts systemically to induce eosinophilia and within tissues to promote local chemotactic signals. Regulation of IL-5 and eotaxin levels within the lung by IL-4 and IL-13 allows Th2 cells to elegantly co-ordinate tissue and peripheral eosinophilia. Whilst the inhibition of either the IL-4/IL-13 or IL-5/ eotaxin pathways resulted in the abolition of tissue eosinophils and AHR, only depletion of IL-5 and eotaxin concurrently results in marked attenuation of pulmonary inflammation. These data highlight the importance of targeting both IL-5 and CCR3 signalling systems for the resolution of inflammation and AHR associated with asthma. S.M. is a Postdoctoral Fellow funded by a grant from the Human Frontiers Foundation to P.S.F. and M.E.R. J.M. is supported by the German Research Association (grant MA 2241/1-1) and S.P.H by a NH&MRC CJ Martin Postdoctoral Fellowship. [source]


Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2009
Seung-Hyung Kim
Abstract Objectives This study aimed to investigate the effect of piperine on airway hyper-responsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, immunoglobulin E and histamine production in a murine model of asthma. Methods Asthma was induced in Balb/c mice by ovalbumin sensitization and inhalation. Piperine (4.5 and 2.25 mg/kg) was orally administered 5 times a week for 8 weeks. At 1 day after the last ovalbumin exposure, airway hyperresponsiveness was determined and samples of bronchoalveolar lavage fluid, lung cells and serum were collected for further analysis. Key findings Piperine-treated groups had suppressed eosinophil infiltration, allergic airway inflammation and airway hyperresponsiveness, and these occurred by suppression of the production of interleukin-4, interleukin-5, immunoglobulin E and histamine. Moreover, polymerase chain reaction products for thymus and activation regulated chemokine from lung cell RNA preparations were decreased in the piperine-treated group compared with control groups, although transforming growth factor-, products were increased in the piperine-treated group. Conclusions The results suggest that the therapeutic mechanism by which piperine effectively treats asthma is based on a reduction of Th2 cytokines (interleukin-4, interleukin-5), eosinophil infiltration, and by marked reduction of thymus and activation regulated chemokine, eotaxin-2 and interleukin-13 mRNA expression (especially transcription of nuclear factor-, dependent genes) in lung tissue, as well as reduced interleukin-4, interleukin-5 and eotaxin levels in bronchoalveolar lavage fluid, and histamine and ovalbumin-specific immunoglobulin E production in serum. [source]


Effects of antisense interleukin-5 gene transferred by recombinant adeno-associated virus to allergic rats

RESPIROLOGY, Issue 1 2010
Daxiong ZENG
ABSTRACT Background and objective: The accumulation of eosinophils in airways is an important characteristic of asthma. The process is primarily mediated by interleukin-5 (IL-5) secreted by Th2 lymphocytes. This study explored a new approach to asthma therapy in which allergic rats were transfected with the IL-5 antisense gene delivered by the recombinant adeno-associated virus (rAAV-ASIL-5). Methods: The viral vector rAAV-ASIL-5 was constructed and the IL-5 antisense gene transfected into allergic rats. The levels of IL-5, IgE, eotaxin and eosinophilic cationic protein (ECP) in sera and bronchoalveolar lavage fluid (BALF) were measured by ELISA. The inflammatory responses in lung tissues were evaluated by histological study. Results: The levels of IL-5 protein in serum and BALF were significantly decreased in the allergic rats treated with rAAV-ASIL-5 (P < 0.05). Serum ovalbumin-specific IgE was reduced in treated rats compared with untreated rats (P < 0.05). rAAV-ASIL-5 treatment also reduced eosinophils in the peripheral blood and BALF, as well as the ECP and eotaxin levels in serum and BALF (P < 0.05). There was significantly less inflammation in the lungs of rAAV-ASIL-5-treated rats than in those of untreated rats. No obvious pathological damage to the kidneys and livers of the rats treated with rAAV was observed. Conclusions: Treatment with rAAV-ASIL-5 inhibited the accumulation of eosinophils and airway inflammation in the rat model of allergic asthma by suppressing IL-5 production. These results suggest that rAAV-ASIL-5-based gene therapy may be used for the treatment of allergic asthma. [source]


Airway cell and cytokine changes in early asthma deterioration after inhaled corticosteroid reduction

CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2007
Y. H. Khor
Summary Background Back-titration of inhaled corticosteroid (ICS) dose in well-controlled asthma patients is emphasized in clinical guidelines, but there are few published data on the airway cell and cytokine changes in relation to ICS reduction. In our study, 20 mild-to-moderate persistent (inspite of low-moderate dose ICS treatment) asthmatic subjects prospectively rendered largely asymptomatic by high-dose ICS were assessed again by clinical, physiological, and airway inflammatory indices after 4,8 weeks of reduced ICS treatment. We aimed at assessing the underlying pathological changes in relation to clinical deterioration. Methods Patients recorded daily symptom scores and peak expiratory flows (PEF). Spirometry and airways hyperreactivity (AHR) were measured and bronchoscopy was performed with assessment of airway biopsies (mast cells, eosinophils, neutrophils, and T lymphoctyes), bronchoalveolar lavage (BAL) IL-5 and eotaxin levels and cellular profiles at the end of high-dose ICS therapy and again after ICS dose reduction. Baseline data were compared with symptomatic steroid-free asthmatics (n=42) and non-asthmatic controls (n=28). Results After ICS reduction, subjects experienced a variable but overall significant increase in symptoms and reductions in PEF and forced expiratory volume in 1 s. There were no corresponding changes in AHR or airways eosinophilia. The most relevant pathogenic changes were increased CD4+/CD8+ T cell ratio, and decreased sICAM-1 and CD18 macrophage staining (potentially indicating ligand binding). However, there was no relationship between the spectrum of clinical deterioration and the changes in cellular profiles or BAL cytokines. Conclusions These data suggest that clinical markers remain the most sensitive measures of early deterioration in asthma during back-titration of ICS, occurring at a time when AHR and conventional indices of asthmatic airway inflammation appear unchanged. These findings have major relevance to management and to how back-titration of ICS therapy is monitored. [source]


Infection of mice with the helminth Strongyloides stercoralis suppresses pulmonary allergic responses to ovalbumin

CLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2001
Chun-Chi Wang
Asthma and helminth infections induce similar immune responses characterized by the presence of peripheral blood eosinophilia and elevated serum IgE levels. Epidemiological surveys have reported either increases or decreases in the development of atopic diseases and asthma based on the prevalence of helminth infections in the population. The aim of this study was to determine if a pre-existing helminth infection would increase or decrease subsequent allergic responses to an unrelated allergen in the lungs. BALB/cByJ mice were infected with the nematode parasite Strongyloides stercoralis prior to ovalbumin (OVA) immunization and intratracheal challenge. Bronchoalveolar lavage (BAL) and fluid (BALF) were collected 3 days post-challenge and cellular and humoral immune responses were measured. Intracellular cytokine staining revealed increased IL-4 and IL-5 producing cells in BAL from mice infected with S. stercoralis before OVA sensitization. Increased IL-5 protein levels and decreased IFN-, protein levels were also observed in the BALF. There was, however, no increase in airway eosinophil accumulation in mice infectd with parasites before sensitization with OVA as compared to mice exposed to OVA alone. Furthermore, eotaxin levels in the lungs induced by OVA was suppressed in mice infected with the parasite before OVA sensitization. The development of OVA specific IgE responses in BALF was also impaired in mice infected with the parasite before sensitization with OVA. These results suggest that a pre-existing helminth infection may potentiate a systemic Type 2-type response yet simultaneously suppress in the lungs allergen-specific IgE responses and eotaxin levels in response to subsequent exposure to allergens. [source]