Earthquake Events (earthquake + event)

Distribution by Scientific Domains


Selected Abstracts


Damage-based design with no repairs for multiple events and its sensitivity to seismicity model

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2007
S. Das
Abstract Conventional design methodology for the earthquake-resistant structures is based on the concept of ensuring ,no collapse' during the most severe earthquake event. This methodology does not envisage the possibility of continuous damage accumulation during several not-so-severe earthquake events, as may be the case in the areas of moderate to high seismicity, particularly when it is economically infeasible to carry out repairs after damaging events. As a result, the structure may collapse or may necessitate large scale repairs much before the design life of the structure is over. This study considers the use of design force ratio (DFR) spectrum for taking an informed decision on the extent to which yield strength levels should be raised to avoid such a scenario. DFR spectrum gives the ratios by which the yield strength levels of single-degree-of-freedom oscillators of different initial periods should be increased in order to limit the total damage caused by all earthquake events during the lifetime to a specified level. The DFR spectra are compared for three different seismicity models in case of elasto-plastic oscillators: one corresponding to the exponential distribution for return periods of large events and the other two corresponding to the lognormal and Weibull distributions. It is shown through numerical study for a hypothetical seismic region that the use of simple exponential model may be acceptable only for small values of the seismic gap length. For moderately large to large seismic gap lengths, it may be conservative to use the lognormal model, while the Weibull model may be assumed for very large seismic gap lengths. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Hybrid platform for high-tech equipment protection against earthquake and microvibration

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2006
Y. L. Xu
Abstract To ensure the high quality of ultra-precision products such as semiconductors and optical microscopes, high-tech equipment used to make these products requires a normal working environment with extremely limited vibration. Some of high-tech industry centres are also located in seismic zones: the safety of high-tech equipment during an earthquake event becomes a critical issue. It is thus imperative to find an effective way to ensure the functionality of high-tech equipment against microvibration and to protect high-tech equipment from damage when earthquake events occur. This paper explores the possibility of using a hybrid platform to mitigate two types of vibration. The hybrid platform, on which high-tech equipment is installed, is designed to work as a passive isolation platform to abate mainly acceleration response of high-tech equipment during an earthquake and to function as an actively controlled platform to reduce mainly velocity response of high-tech equipment under normal working condition. To examine the performance of the hybrid platform, the analytical model of a coupled hybrid platform and building system incorporating with magnetostrictive actuators is established. The simulation results obtained by applying the analytical model to a high-tech facility indicate that the proposed hybrid platform is feasible and effective. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Clustering revealed in high-resolution simulations and visualization of multi-resolution features in fluid,particle models

CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 2 2003
Krzysztof Boryczko
Abstract Simulating natural phenomena at greater accuracy results in an explosive growth of data. Large-scale simulations with particles currently involve ensembles consisting of between 106 and 109 particles, which cover 105,106 time steps. Thus, the data files produced in a single run can reach from tens of gigabytes to hundreds of terabytes. This data bank allows one to reconstruct the spatio-temporal evolution of both the particle system as a whole and each particle separately. Realistically, for one to look at a large data set at full resolution at all times is not possible and, in fact, not necessary. We have developed an agglomerative clustering technique, based on the concept of a mutual nearest neighbor (MNN). This procedure can be easily adapted for efficient visualization of extremely large data sets from simulations with particles at various resolution levels. We present the parallel algorithm for MNN clustering and its timings on the IBM SP and SGI/Origin 3800 multiprocessor systems for up to 16 million fluid particles. The high efficiency obtained is mainly due to the similarity in the algorithmic structure of MNN clustering and particle methods. We show various examples drawn from MNN applications in visualization and analysis of the order of a few hundred gigabytes of data from discrete particle simulations, using dissipative particle dynamics and fluid particle models. Because data clustering is the first step in this concept extraction procedure, we may employ this clustering procedure to many other fields such as data mining, earthquake events and stellar populations in nebula clusters. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Multi-scale system reliability analysis of lifeline networks under earthquake hazards

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2010
Junho Song
Abstract Recent earthquake events evidenced that damage of structural components in a lifeline network may cause prolonged disruption of lifeline services, which eventually results in significant socio-economic losses in the affected area. Despite recent advances in network reliability analysis, the complexity of the problem and various uncertainties still make it a challenging task to evaluate the post-hazard performance and connectivity of lifeline networks efficiently and accurately. In order to overcome such challenges and take advantage of merits of multi-scale analysis, this paper develops a multi-scale system reliability analysis method by integrating a network decomposition approach with the matrix-based system reliability (MSR) method. In addition to facilitating system reliability analysis of large-size networks, the multi-scale approach enables optimizing the level of computational effort on subsystems; identifying the relative importance of components and subsystems at multiple scales; and providing a collaborative risk management framework. The MSR method is uniformly applied for system reliability analyses at both the lower-scale (for link failure) and the higher-scale (for system connectivity) to obtain the probability of general system events, various conditional probabilities, component importance measures, statistical correlation between subsystem failures and parameter sensitivities. The proposed multi-scale analysis method is demonstrated by its application to a gas distribution network in Shelby County of Tennessee. A parametric study is performed to determine the number of segments during the lower-scale MSR analysis of each pipeline based on the strength of the spatial correlation of seismic intensity. It is shown that the spatial correlation should be considered at both scales for accurate reliability evaluation. The proposed multi-scale analysis approach provides an effective framework of risk assessment and decision support for lifeline networks under earthquake hazards. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Post-earthquake bridge repair cost and repair time estimation methodology

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2010
Kevin R. Mackie
Abstract While structural engineers have traditionally focused on individual components (bridges, for example) of transportation networks for design, retrofit, and analysis, it has become increasingly apparent that the economic costs to society after extreme earthquake events are caused at least as much from indirect costs as direct costs due to individual structures. This paper describes an improved methodology for developing probabilistic estimates of repair costs and repair times that can be used for evaluating the performance of new bridge design options and existing bridges in preparation for the next major earthquake. The proposed approach in this paper is an improvement on previous bridge loss modeling studies,it is based on the local linearization of the dependence between repair quantities and damage states so that the resulting model follows a linear relationship between damage states and repair points. The methodology uses the concept of performance groups (PGs) that account for damage and repair of individual bridge components and subassemblies. The method is validated using two simple examples that compare the proposed method to simulation and previous methods based on loss models using a power,law relationship between repair quantities and damage. In addition, an illustration of the method is provided for a complete study on the performance of a common five-span overpass bridge structure in California. Intensity-dependent repair cost ratios (RCRs) and repair times are calculated using the proposed approach, as well as plots that show the disaggregation of repair cost by repair quantity and by PG. This provides the decision maker with a higher fidelity of data when evaluating the contribution of different bridge components to the performance of the bridge system, where performance is evaluated in terms of repair costs and repair times rather than traditional engineering quantities such as displacements and stresses. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Damage-based design with no repairs for multiple events and its sensitivity to seismicity model

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2007
S. Das
Abstract Conventional design methodology for the earthquake-resistant structures is based on the concept of ensuring ,no collapse' during the most severe earthquake event. This methodology does not envisage the possibility of continuous damage accumulation during several not-so-severe earthquake events, as may be the case in the areas of moderate to high seismicity, particularly when it is economically infeasible to carry out repairs after damaging events. As a result, the structure may collapse or may necessitate large scale repairs much before the design life of the structure is over. This study considers the use of design force ratio (DFR) spectrum for taking an informed decision on the extent to which yield strength levels should be raised to avoid such a scenario. DFR spectrum gives the ratios by which the yield strength levels of single-degree-of-freedom oscillators of different initial periods should be increased in order to limit the total damage caused by all earthquake events during the lifetime to a specified level. The DFR spectra are compared for three different seismicity models in case of elasto-plastic oscillators: one corresponding to the exponential distribution for return periods of large events and the other two corresponding to the lognormal and Weibull distributions. It is shown through numerical study for a hypothetical seismic region that the use of simple exponential model may be acceptable only for small values of the seismic gap length. For moderately large to large seismic gap lengths, it may be conservative to use the lognormal model, while the Weibull model may be assumed for very large seismic gap lengths. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Hybrid platform for high-tech equipment protection against earthquake and microvibration

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2006
Y. L. Xu
Abstract To ensure the high quality of ultra-precision products such as semiconductors and optical microscopes, high-tech equipment used to make these products requires a normal working environment with extremely limited vibration. Some of high-tech industry centres are also located in seismic zones: the safety of high-tech equipment during an earthquake event becomes a critical issue. It is thus imperative to find an effective way to ensure the functionality of high-tech equipment against microvibration and to protect high-tech equipment from damage when earthquake events occur. This paper explores the possibility of using a hybrid platform to mitigate two types of vibration. The hybrid platform, on which high-tech equipment is installed, is designed to work as a passive isolation platform to abate mainly acceleration response of high-tech equipment during an earthquake and to function as an actively controlled platform to reduce mainly velocity response of high-tech equipment under normal working condition. To examine the performance of the hybrid platform, the analytical model of a coupled hybrid platform and building system incorporating with magnetostrictive actuators is established. The simulation results obtained by applying the analytical model to a high-tech facility indicate that the proposed hybrid platform is feasible and effective. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Mud volcanoes of Italy

GEOLOGICAL JOURNAL, Issue 1 2004
Giovanni Martinelli
Abstract The locations and information about the sizes of 61 mud volcanoes on the Italian mainland and Sicily, plus an area of mud diapirism in the Italian Adriatic Sea, are presented. Data about the emission products are also provided. The majority of these mud volcanoes are found where thick sedimentary sequences occur within a zone of tectonic compression associated with local plate tectonic activity: the movement of the Adriatic microplate between the converging African and Eurasian plates. The principal gas emitted by these mud volcanoes is methane, which probably originates from deep within the sediments. Other mud volcanoes, associated with igneous volcanism, produce mainly carbon dioxide. The mud diapirs in the Adriatic Sea are thought to form as a result of the mobilization of shallow gassy sediments. It has been shown that radon emissions from mud volcanoes are indicators of forthcoming earthquake events. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula: Age constraint by optically stimulated luminescence dating

ISLAND ARC, Issue 1 2003
Jin-Han Ree
Abstract Two groups of Quaternary faults occur in the southeastern Korean Peninsula. The first group is north-northeast-striking, high-angle dextral strike,slip faults. The second group is north-northeast-striking, low-angle reverse faults that represent the reactivation of the pre-existing normal faults. Optically stimulated luminescence dating of Quaternary sediments cut by one of the reverse faults constrains the faulting age to post-32 Ka. These faults seem to be capable of further slip under the current tectonic stress regime, as determined by recent earthquake events in northeast Asia. Therefore, the traditional concept that the southeastern Korean Peninsula is seismically stable should be reappraised. [source]