Earth Ions (earth + ion)

Distribution by Scientific Domains

Kinds of Earth Ions

  • rare earth ion


  • Selected Abstracts


    Multifunctional Mesostructured Silica Microspheres from an Ultrasonic Aerosol Spray,

    ADVANCED FUNCTIONAL MATERIALS, Issue 19 2008
    Li Li
    Abstract Multifunctional mesostructured silica microspheres are prepared using ultrasonic aerosol spray in conjunction with solvent evaporation-induced assembly. Rare earth ion,phenanthroline complexes, magnetite particles, photoacid generators, and pH-sensitive dyes are chosen as luminescent, magnetic, and photosensitive components. The incorporation of these functional components into mesostructured silica microspheres can be readily realized by dispersing them in the precursor solution of the aerosol spray process. Luminescent microspheres that can emit at multiple wavelengths when excited at a single wavelength are produced by the addition of multiple rare earth complexes into the precursor solution. The addition of magnetite particles leads to the production of magnetic luminescent microspheres. Photoacid generators and pH-sensitive dyes are further employed to produce magnetic photosensitive microspheres that can release acid and change color upon UV light illumination. Such multifunctional microspheres could have exciting potential for many optical and biotechnological applications, such as multiplexed labeling, diagnosis, simultaneous imaging and therapy, cell capture and separation, targeted delivery, and optical data storage. [source]


    Self-Assembled Heavy Lanthanide Orthovanadate Architecture with Controlled Dimensionality and Morphology

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 5 2009
    Liwu Qian Dr.
    Abstract Nearly monodisperse YVO4 architectures with persimmon-like, cube-like and nanoparticle shapes have been synthesised on a large scale by means of a complexing-agent-assisted solution route. The shape and size of these as-prepared architectures can be tuned effectively by controlling the reaction conditions, such as reaction time, the molar ratio of complexing agent/Y3+ and different complexing agents. As a typical morphology, the growth process of monodisperse nanopersimmons has been examined. To extend this method, other LnVO4 (Ln=Ce, Gd, Dy, Er) complexes with well-defined shape and dimensionality can also be achieved by adjusting different rare earth precursors. Further studies reveal that the morphology of the as-synthesised lanthanide orthovanadate is determined mainly by the interaction between rare earth ion and the complexing agent. Ultraviolet (UV) absorption and photoluminescence spectra show that the optical properties of YVO4 nanopersimmons are relevant to their size and shape. This work sheds some light on the design of well-defined complex nanostructures, and explores the potential applications of the as-synthesised architectures. [source]


    Spins as probes of different electronic states

    CONCEPTS IN MAGNETIC RESONANCE, Issue 2 2007
    Dieter Suter
    Abstract Nuclear spins are efficient probes of electronic states. Because most NMR experiments are performed in thermal equilibrium, they probe the electronic ground state,the only state that is significantly populated under ambient conditions. Probing electronically excited states becomes possible, if magnetic resonance techniques are combined with optical (laser) excitation. Depending on the nature of the electronic state, drastic changes of the magnetic resonance parameters may be observed. We discuss the basic principles of this type of investigation. Depending on the lifetime of the electronically excited state, it is possible to measure separate spectra of ground and excited state if the lifetime is long on the NMR timescale, or an averaged spectrum if the lifetime is short. We present examples for both limiting cases using rare earth ions and semiconductor heterostructures. © 2007 Wiley Periodicals, Inc. Concepts Magn Reson Part A 30A: 116,126, 2007. [source]


    Crystal growth features and properties of layered rare earth and barium cobaltates

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 4-5 2005
    G. L. Bychkov
    Abstract High quality single crystals of LnBaCo2O5+, (0 < , < 1) (Ln = Pr, Eu, Gd, Tb, Dy) with rectangular shape and average dimensions 5 mm × 5 mm × 1 mm were grown for the first time from overstoichiometric flux melt. The data on the primary crystallization field of most cobaltate phases, which appear in parts of corresponding Gibbs triangles in the range 1373 , 1523 K are discussed. Bulk single crystals of new phases HoBaCo4O7 up to 300 mm3, YBaCo4O7 and TbBaCo4O7 up to 10 mm3 in volume were grown first. A solution of these compounds structure has been found in the space group P63mc. For the Ln = Pr, Gd, Sm, Tb, Dy, Ho based systems under the liquidus line there are several other new cobaltate phases of both perovskite, and hexagonal crystal structure. Stability of the double perovskite phase and temperature of the antiferromagnetic , ferromagnetic phase transition in relation to the radius of rare earth ions are compared. The data on the exact analysis of chemical composition, including EDX and iodometric titration, as well as results on magnetic susceptibility of EuBaCo1- xAlxO5+, (0 < x < 0.3) are discussed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
    Rajiv Kumar
    Abstract Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20,30,nm size) co-doped with the rare earth ions Gd3+ and Er3+/Yb3+/Eu3+ are synthesized and dispersed in water. An efficient up- and downconverted photoluminescence from the rare-earth ions (Er3+ and Yb3+ or Eu3+) doped into fluoride nanomatrix allows optical imaging modality for the nanoprobes. Upconversion nanophosphors (UCNPs) show nearly quadratic dependence of the photoluminescence intensity on the excitation light power, confirming a two-photon induced process and allowing two-photon imaging with UCNPs with low power continuous wave laser diodes due to the sequential nature of the two-photon process. Furthermore, both UCNPs and downconversion nanophosphors (DCNPs) are modified with biorecognition biomolecules such as anti-claudin-4 and anti-mesothelin, and show in vitro targeted delivery to cancer cells using confocal microscopy. The possibility of using nanoprobes for optical imaging in vivo is also demonstrated. It is also shown that Gd3+ co-doped within the nanophosphors imparts strong T1 (Spin-lattice relaxation time) and T2 (spin-spin relaxation time) for high contrast MR imaging. Thus, nanoprobes based on fluoride nanophosphors doped with rare earth ions are shown to provide the dual modality of optical and magnetic resonance imaging. [source]


    Efficient Near-Infrared Emission from Sodalite Derivatives,

    ADVANCED MATERIALS, Issue 3 2006
    M. Lezhnina
    The use of nanoporous host materials for luminescent guests has been extended into the near-infrared (NIR) regime using sodalite derivatives containing rare earth ions and the tungstate group (see Figure). The emission intensities obtained for Nd3+ meet or even surpass commercial Nd glasses. While Nd3+ -tungstate-modified zeolites do not yield significant luminescence, NIR emission occurs in the sodalites due to the low phonon frequencies involved and the exclusion of water in particular. [source]


    Thermal Conductivity of Monazite-Type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd)

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2009
    Aibing Du
    Low-thermal conductivity ceramics in monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd) ceramics are expected to have potential in structural (refractories, thermal insulator) and nuclear applications. To this end, the present study determines their thermal conductivities and examines how differences of the rare earth ions change their thermal conductivity at different temperatures. The results show that their conductivities are remarkably low from 25° to 1000°C. In addition, different conductivity variation mechanisms exist that change gradually upon altering from LaPO4 to GdPO4 at low and high temperatures. At relatively lower temperatures (,400°C), the thermal conductivities of all the REPO4 ceramics decrease nearly at first, reach a minimum value, and then rise with gradual altering from LaPO4 to GdPO4. It may be due to the combined effects of the increase of both the anharmonicities in lattice vibrations and the bond strength. As the temperature increases, the conductivity trends become obscure, and the conductivities of the monazite-type REPO4 approach their minimum thermal conductivities when the temperature is above 800°C. [source]


    Sol,gel derived metal oxides doped with silver nanoparticles as tunable plasmonic materials

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2010
    Leonid Dolgov
    Abstract New composite materials made of transition metal oxides doped with silver nanoparticles are proposed. Titanium and zirconium dioxide matrices were prepared by sol,gel method adjusted for addition of silver nanodopants. Commercially available silver nanoparticles in the form of powder (30,50,nm) or colloidal solution (5,15,nm) were used for doping of oxide hosts. To recover plasmonic properties of silver after annealing in air, reduction of samples in the H2:Ar atmosphere was performed. As a result, the silver-containing TiO2 and ZrO2 films of good optical quality with plasmonic absorption near 400,nm were obtained. The potential of embedding of luminescent markers (like rare earth ions) into considered films is discussed. [source]


    A comparative investigation of the damage build-up in GaN and Si during rare earth ion implantation

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2008
    Florence Gloux
    Abstract The medium range implantation of rare earth ions at room temperature in GaN layers leads to the formation of point defect clusters, basal and prismatic stacking faults from the lowest fluence. When a threshold fluence of about 3 × 1015 at/cm2 is reached, a highly disordered ,nanocrystalline layer' (NL) is observed to form at the surface. This layer is made of a mixture of misoriented nanocrystallites and voids. Beyond this NL, I1, I2 and E basal stacking faults (BSFs) have been identified, as well as in GaN implanted at lower fluences than the threshold. Prismatic stacking faults (PSFs) with Drum atomic configuration connect the I1 BSFs. A similar investigation of the damage in Eu implanted Si shows a completely different behaviour; in this case, from the relatively low fluence 1 × 1014 at/cm2, amorphization starts in patches at the projected range and extends very rapidly towards the surface and the bulk, to form a uniform amorphous layer already at 2 × 1014 at/cm2. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Rare earth ions in porous silicon: optical properties

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2007
    H. Elhouichet
    Abstract Porous silicon (PS) is doped with rare earth (RE) ions (Er, Eu, Tb) by electrochemical anodisation. The penetration of RE into the PS layer is confirmed by Rutherford Backscattering Spectroscopy (RBS) and by Energy Dispersive X-ray (EDX) measurements. Efficient visible and infrared emissions were observed at room temperature. The activation temperatures of Eu, Tb and Er in PS are determined from the effect of thermal annealing on the photoluminescence (PL) intensity. From the evolution of the PL intensity versus temperature, it was found that a RE related level defect can be involved on the excitation and emission processes. Pump intensity dependent PL studies revealed that for the electrochemical incorporation, most of the RE ions are localized inside the Si nanocrystallites and not in stochiometric SiO2. The optical cross section is close to that of erbium in Si nanocrystallites. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Convenient Synthesis of Multifunctional EDTA-Based Chiral Metal Chelates Substituted with an S -Mesylcysteine

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2005
    Andrei Leonov Dr.
    Abstract We describe the synthetic route to ethylenediaminetetraacetic acid (EDTA) derivatives that can be attached to surface-exposed thiol functional groups of cysteine residues in proteins, via a methylthiosulfonate moiety that is connected in a stereochemically unique way to the C-1 carbon atom of EDTA. Such compounds can be used to align proteins in solution without the need to add liquid crystalline media, and are, therefore, of great interest for the NMR spectroscopic analysis of biomolecules. The binding constant for the paramagnetic tag to lanthanide ions was determined by measuring luminescence. For the Tb+3,ligand complex, a Kb value of 6.5×1017,M,1 was obtained. This value is in excellent agreement with literature values for the related EDTA compound. In addition, it could be shown that there is no significant reduction in the luminescence intensity upon addition of a 104 excess of Ca2+ ions, indicating that this paramagnetic tag is compatible with buffers containing high concentrations of divalent alkaline earth ions. [source]