Dust Grains (dust + grain)

Distribution by Scientific Domains


Selected Abstracts


Extent of thermal ablation suffered by model organic microparticles during aerogel capture at hypervelocities

METEORITICS & PLANETARY SCIENCE, Issue 10 2009
M. J. Burchell
Commercial polystyrene particles (20 ,m diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ,1 km s,1, but significant surface carbonization was found at 2 km s,1, and major particle mass loss at ,3 km s,1. Particles impacting at ,6.1 km s,1 (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s,1. This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre-impact particle's thermal history. [source]


Time evolution and temperatures of hypervelocity impact-generated tracks in aerogel

METEORITICS & PLANETARY SCIENCE, Issue 10 2009
Gerardo Dominguez
Due to the fragile and heterogeneous nature of cometary dust grains, their fragments are found along the walls of tracks that are formed during the capture process. These fragments appear to experience a wide range of thermal alteration and the causes of this variation are not well understood at a theoretical level as physical models of track formation are not well developed. Here, a general model of track formation that allows for the existence of partially and completely vaporized aerogel material in tracks is developed. It is shown that under certain conditions, this general track model reduces to the kinetic "snowplow" model that has previously been proposed. It is also shown, based on energetic considerations, that track formation is dominated by an expansion that is snowplow-like in the later stages of track formation. The equation of motion for this snowplow-like stage can be solved analytically, thus placing constraints on the amount of heating experienced by cometary dust fragments embedded in track walls. It is found that the heating of these fragments, for a given impact velocity, is expected to be greater for those embedded in larger tracks. Given the expected future use of aerogels for sample return missions, the results presented here imply that the choice of aerogel compositions can have a significant effect on the modification of samples captured and retrieved by these collectors. [source]


Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils

METEORITICS & PLANETARY SCIENCE, Issue 1-2 2008
A. T. Kearsley
By comparison to laboratory shots of known particle dimensions and density, using the same velocity and incidence geometry as the Stardust Wild 2 encounter, we can derive size and mass of the cometary dust grains. Using scanning electron microscopy (SEM) of foil samples (both flown on the mission and impacted in the laboratory) we have recognized a range of impact feature shapes from which we interpret particle density and internal structure. We have documented composition of crater residues, including stoichiometric material in 3 of 7 larger craters, by energy dispersive X-ray microanalysis. Wild 2 dust grains include coarse (>10 ,m) mafic silicate grains, some dominated by a single mineral species of density around 3,4 g cm,3 (such as olivine). Other grains were porous, low-density aggregates from a few nanometers to 100 ,m, with an overall density that may be lower than 1 g cm,3, containing mixtures of silicates and sulfides and possibly both alkali-rich and mafic glass. The mineral assemblage is very similar to the most common species reported from aerogel tracks. In one large aggregate crater, the combined diverse residue composition is similar to CI chondrites. The foils are a unique collecting substrate, revealing that the most abundant Wild 2 dust grains were of sub-micrometer size and of complex internal structure. Impact residues in Stardust foil craters will be a valuable resource for future analyses of cometary dust. [source]


Probing the origin of the dark material on Iapetus

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2010
F. Tosi
ABSTRACT Among the icy satellites of Saturn, Iapetus shows a striking dichotomy between its leading and trailing hemispheres, the former being significantly darker than the latter. Thanks to the Visual and Infrared Mapping Spectrometer (VIMS) imaging spectrometer on-board Cassini, it is now possible to investigate the spectral features of the satellites in Saturn system within a wider spectral range and with an enhanced accuracy than with previously available data. In this work, we present an application of the G-mode method to the high resolution, visible and near-infrared data of Phoebe, Iapetus and Hyperion collected by Cassini/VIMS, in order to search for compositional correlations. We also present the results of a dynamical study on the efficiency of Iapetus in capturing dust grains travelling inwards in Saturn system with the aim of evaluating the viability of the Poynting,Robertson drag as the physical mechanism transferring the dark material to the satellite. The results of spectroscopic classification are used jointly with the ones of the dynamical study to describe a plausible physical scenario for the origin of Iapetus' dichotomy. Our work shows that mass transfer from the outer Saturnian system is an efficient mechanism, particularly for the range of sizes hypothesized for the particles composing the newly discovered outer ring around Saturn. Both spectral and dynamical data indicate Phoebe as the main source of the dark material. However, due to considerations on the collisional history of the Saturnian irregular satellites and to the differences in the spectral features of Phoebe and the dark material on Iapetus in the visible and ultraviolet range, we suggest a multisource scenario where now extinct prograde satellites and the disruptive impacts that generated the putative collisional families played a significant role in supplying the original amount of dark material. [source]


A semi-empirical model of the infrared emission from galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
D. C. Ford
ABSTRACT We present a semi-empirical model for the infrared emission of dust around star-forming sites in galaxies. Our approach combines a simple model of radiative transfer in dust clouds with a state-of-the-art model of the microscopic optical properties of dust grains pioneered by Draine & Li. In combination with the starburst99 stellar spectral synthesis package, this framework is able to produce synthetic spectra for galaxies which extend from the Lyman limit through to the far-infrared. We use it to probe how model galaxy spectra depend on the physical characteristics of their dust grain populations, and on the energy sources which heat that dust. We compare the predictions of our model with the 8- and 24-,m luminosities of sources in the Spitzer First Look Survey, and conclude by using the models to analyse the relative merits of various colour diagnostics in distinguishing systems out to a redshift of 2 with ongoing star formation from those with only old stellar populations. [source]


A census of the Carina Nebula , II.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Energy budget, global properties of the nebulosity
ABSTRACT The first paper in this series took a direct census of energy input from the known OB stars in the Carina Nebula, and in this paper we study the global properties of the surrounding nebulosity. This detailed comparison may prove useful for interpreting observations of extragalactic giant H ii regions and ultraluminous infrared (IR) galaxies. We find that the total IR luminosity of Carina is about 1.2 × 107 L,, accounting for only about 50,60 per cent of the known stellar luminosity from Paper I. Similarly, the ionizing photon luminosity derived from the integrated radio continuum is about 7 × 1050 s,1, accounting for ,75 per cent of the expected Lyman continuum from known OB stars. The total kinetic energy of the nebula is about 8 × 1051 erg, or ,30 per cent of the mechanical energy from stellar winds over the lifetime of the nebula, so there is no need to invoke a supernova (SN) explosion based on energetics. Warm dust grains residing in the H ii region interior dominate emission at 10,30 ,m, but cooler grains at 30,40 K dominate the IR luminosity and indicate a likely gas mass of ,106 M,. We find an excellent correlation between the radio continuum and 20,25 ,m emission, consistent with the idea that the ,80-K grain population is heated by trapped Ly, photons. Similarly, we find a near perfect correlation between the far-IR optical depth map of cool grains and 8.6-,m hydrocarbon emission, indicating that most of the nebular mass resides as atomic gas in photodissociation regions and not in dense molecular clouds. Synchronized star formation around the periphery of Carina provides a strong case that star formation here was indeed triggered by stellar winds and ultraviolet radiation. This second generation appears to involve a cascade toward preferentially intermediate- and low-mass stars, but this may soon change when , Carinae and its siblings explode. If the current reservoir of atomic and molecular gas can be tapped at that time, massive star formation may be rejuvenated around the periphery of Carina much as if it were a young version of Gould's Belt. Furthermore, when these multiple SNe occur, the triggered second generation will be pelted repeatedly with SN ejecta bearing short-lived radioactive nuclides. Carina may therefore represent the most observable analogue to the cradle of our own Solar system. [source]


Revisiting two local constraints of the Galactic chemical evolution

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
M. Haywood
ABSTRACT I review the uncertainties in two observational local constraints of the Galactic disc chemical evolution: the metallicity distribution of long-lived dwarfs and the age,metallicity relation. Analysing most recent data, it is shown first that the observed metallicity distribution at solar galactocentric radius, designed with standard methods, is more fit to a closed-box model than to the infall metallicity distribution. We argue that this is due to the specific contribution of the thick-disc population, which has been overlooked both in the derivation of the observed metallicity distribution and in the standard chemical evolution models. Although this agreement disqualifies the metallicity distribution as the best supportive (indirect) evidence for infall, we argue that the evolution must be more complex than described by either the closed-box or the standard infall models. It is then shown that recent determinations of the age,metallicity distribution (AMD) from large Strömgren photometric surveys are dominated by noise resulting from systematic biases in metallicities and effective temperatures. These biases are evaluated and a new AMD is obtained, where particularities of the previous determinations are phased out. The new age,metallicity relation shows a mean increase limited to about a factor of 2 in Z over the disc age. It is shown that below 3 Gyr, the dispersion in metallicity is about 0.1 dex, which, given the observational uncertainties in the derived metallicities, is compatible with the small cosmic dispersion measured on the interstellar medium and meteoritic pre-solar dust grains. A population that is progressively older and more metal rich arises at a metallicity greater than that of the Hyades, to reach [Fe/H],+0.5 dex at ages greater than 5 Gyr. We suggest that this is best explained by radial migration. A symmetrical widening of the metallicity interval towards lower values is seen at about the same age, which is attributed to a similar cause. Finally, the new derived ages are sufficiently consistent that an age,metallicity relation within the thick disc is confirmed. These new features altogether draw a picture of the chemical evolution in the solar neighbourhood where dynamical effects and complexity in the AMD dominate, rather than a generalized high dispersion at all ages. [source]


Lattice modes in a system of charge rotators in a plasma environment

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 11 2004
S. V. Vladimirov
Abstract Three dimensional rotatory modes of oscillations in a one-dimensional chain of rod-like charged particles or dust grains in a plasma are investigated. An oscillatory dependence on wavenumber and a critical dependence on the relative strengths of the confining potential is found. The characteristic frequency range for the oscillatory modes is of the order of the dust plasma frequency. The azimuthal and colatitudinal modes show opposite characteristics in the near and far interparticle distance regimes, respectively. The rods are shown to move, or switch to the relevant equilibrium, dependind on the confining parameters. This is an example of a phase change phenomenon which is analogous to that observed in liquid crystals. The ability to line up rods in different directions, by alternating the relative sizes of the confining potentials, is a powerful tool for applications. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Sulphur abundances in halo stars from multiplet 3 at 1045 nm,

ASTRONOMISCHE NACHRICHTEN, Issue 7 2010
E. Caffau
Abstract Sulphur is a volatile , -element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal-poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal-poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen , line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra-red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal-poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Mid-Infrared Imaging and Spectroscopic Observations of the Galactic Center with Subaru/COMICS

ASTRONOMISCHE NACHRICHTEN, Issue S1 2003
Y. Okada
Abstract We report the results of mid-infrared (7.8,m,13.2 ,m) high-spatial resolution imaging and spectroscopic observations of the Galactic center region with the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the Subaru telescope. The images clearly show bright infrared sources and small structures in the diffuse emission. The spectra of all the observed positions show the 9.7 ,m silicate absorption feature. After corrected for the empirically-derived extinction, the intrinsic spectra of the infrared sources show either strong silicate emission or absorption, while the intrinsic diffuse emission has a power-law type spectrum. This difference indicates a possibility of dust processing due to the interaction between the infrared sources and their surrounding medium or a different origin of the dust grains surrounding the sources from those in the diffuse region. [source]